scholarly journals Changes in mobility and solubility of the redox sensitive metals Fe, Mn and Co at the seawater-sediment interface following CO<sub>2</sub> seepage

2010 ◽  
Vol 7 (2) ◽  
pp. 569-583 ◽  
Author(s):  
M. V. Ardelan ◽  
E. Steinnes

Abstract. The impact of CO2 seepage on the solubility and distribution of the redox-sensitive metals iron, manganese, and cobalt in seawater and sediment pore water has been studied in experiments in laboratory-scale 0.6 m3 chambers. The mobility and solubility of Fe, Mn and Co were investigated in seawater, membrane filtered seawater, and DGT samplers deployed in water and sediment during a 26 day CO2 seepage study. During the first phase of the experiment of CO2 seepage (0–16 days), total acid-leachable (pH 1) and "dissolved" (<0.2 μm) concentrations of Fe, Mn and Co (DFe, DMn and DCo) in the seawater increased significantly; the ratios of concentrations of DFe, DMn and DCo in the CO2 chamber to the corresponding values in the control chamber (RDFe, RDMn and RDCo) were as high as 6, 65 and 58, respectively. The second phase of experiment consisted of an additional 10 days of incubation, where the concentrations of all the metals studied still increased but at reduced rates for DMn and DCo. The highest values of RDFe, RDMn and RDCo were about 3 for all metals during this part of the experiment. DGT (diffusive gradients in thin film) labile fractions denoted FeDGT, MnDGT and CoDGT were, respectively 50, 25 and 22 times higher in the CO2 seepage chamber than in the control chamber in the first phase of the experiment. During the second phase, all DGT labile metal concentrations still increased considerably, most notably for Fe. The ratio of FeDGT in the CO2 chamber to that in the control (RDGT-Fe) was still high, about 5, in the second phase of the experiment, whereas the increase in MnDGT and CoDGT slowed down. Our results indicate that acidification following CO2 seepage enhances the mobility and solubility of Fe Mn and Co in sediment and overlying water with contribution of changing in redox conditions and seepage related re-suspension.

2009 ◽  
Vol 6 (3) ◽  
pp. 5623-5659 ◽  
Author(s):  
M. V. Ardelan ◽  
E. Steinnes

Abstract. The impact of CO2 seepage on the solubility and distribution of the redox-sensitive metals iron, manganese, and cobalt in seawater and sediment pore water has been studied in experiments in laboratory-scale 0.6 m3 chambers. The mobility and solubility of Fe, Mn and Co were investigated in seawater, membrane filtered seawater, and DGT samplers deployed in water and sediment during a 26 day CO2 seepage study. During the first phase of the experiment of CO2 seepage (0–16 days), total acid-leachable (pH≈1) and "dissolved" (<0.2 μm) concentrations of Fe, Mn and Co (DFe, DMn and DCo) in the seawater increased significantly; the ratios of concentrations of DFe, DMn and DCo in the CO2 chamber to the corresponding values in the control chamber (RDFe, RDMn and RDCo) were as high as 6, 65 and 58, respectively. The second phase of experiment consisted of an additional 10 days of incubation, where the concentrations of all the metals studied still increased but at reduced rates for DMn and DCo. The highest values of RDFe, RDMn and RDCo were about 3 for all metals during this part of the experiment. DGT (diffusive gradients in thin film) labile fractions denoted FeDGT, MnDGT and CoDGT were, respectively 50, 25 and 22 times higher in the CO2 seepage chamber than in the control chamber in the first phase of the experiment. During the second phase, all DGT labile metal concentrations still increased considerably, most notably for Fe. The ratio of FeDGT in the CO2 chamber to that in the control (RDGT-Fe) was still high, about 5, in the second phase of the experiment, whereas the increase in MnDGT and CoDGT slowed down. Our results indicate that acidification following CO2 seepage enhances the mobility and solubility of Fe Mn and Co in sediment and overlying water with contribution of changing in redox conditions and seepage related re-suspension.


2020 ◽  
Vol 20 (4) ◽  
pp. 1241-1252
Author(s):  
Han Wang ◽  
Yuping Han ◽  
Lide Pan

Abstract Based on overlying water and sediment sample collection from 15 sites during July, September, November 2018 and January 2019 in the hydro-fluctuation belt of Danjiangkou reservoir China, the variation of nitrogen (N) was studied. And the concentrations of NH4+-N, NO3−-N and NO2−-N in the sediment, pore water and overlying water were determined to evaluate the diffusion flux across the water–sediment interface. The results showed that the lowest sediment N concentration was 36.54 mg/L in July, and the highest one was 145.93 mg/L in November. Spatially, the sediment N concentrations were higher in tidal soil and loam than in sandy soil. According to the diffusion fluxes of NH4+, NO3− and NO2−, sediments at all sites tend to release N to the overlying water except in the sampling month of November, when the sediment acts as a sink of NO3−. The highest release rates of NH4+-N and NO3−-N were 17.66 mg m−2·d−1 and 80.15 mg m−2·d−1, respectively, which are much higher than the release rate of NO2−-N (0.29 mg m−2·d−1). The findings indicate that hydro-fluctuation belt sediment contributes a lot to the nitrogen contents in the overlying water, and internal pollution is a main reason for the water quality deterioration and even eutrophication.


Author(s):  
Roger Moussa ◽  
Bruno Cheviron

Floods are the highest-impact natural disasters. In agricultural basins, anthropogenic features are significant factors in controlling flood and erosion. A hydrological-hydraulic-erosion diagnosis is necessary in order to choose the most relevant action zones and to make recommendations for alternative land uses and cultivation practices in order to control and reduce floods and erosion. This chapter first aims to provide an overview of the flow processes represented in the various possible choices of model structure and refinement. It then focuses on the impact of the spatial distribution and temporal variation of hydrological soil properties in farmed basins, representing their effects on the modelled water and sediment flows. Research challenges and leads are then tackled, trying to identify the conditions in which sufficient adequacy exists between site data and modelling strategies.


Healthcare ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 170
Author(s):  
Encarna Hernández ◽  
Marcos Camacho ◽  
César Leal-Costa ◽  
María Ruzafa-Martínez ◽  
Antonio Jesús Ramos-Morcillo ◽  
...  

Clinical simulation in obstetrics has turned out to be a tool that can reduce the rate of perinatal morbidity and mortality. The objective of this study was to analyze the impact and evaluate the effects of training with high-fidelity simulation of obstetric emergencies on a multidisciplinary group. The quasi-experimental research study was structured in three phases: a first phase where the most important obstetric emergencies were determined, a second phase of design and development of the selected cases for simulation training, and a third and final phase where the abilities and satisfaction of the multidisciplinary team were analyzed. Three scenarios and their respective evaluation tools of obstetric emergencies were selected for simulation training: postpartum hemorrhage, shoulder dystocia, and breech delivery. The health professionals significantly improved their skills after training, and were highly satisfied with the simulation experience (p < 0.05). An inter-observer agreement between good and excellent reliability was obtained. Regarding conclusions, we can state that high-fidelity obstetric emergency simulation training improved the competencies of the health professionals.


2021 ◽  
Vol 19 (6) ◽  
pp. 2483-2504
Author(s):  
Luigi Di Sarno ◽  
Jing-Ren Wu

AbstractThis paper presents the fragility assessment of non-seismically designed steel moment frames with masonry infills. The assessment considered the effects of multiple earthquakes on the damage accumulation of steel frames, which is an essential part of modern performance-based earthquake engineering. Effects of aftershocks are particularly important when examining damaged buildings and making post-quake decisions, such as tagging and retrofit strategy. The procedure proposed in the present work includes two phase assessment, which is based on incremental dynamic analyses of two refined numerical models of the case-study steel frame, i.e. with and without masonry infills, and utilises mainshock-aftershock sequences of natural earthquake records. The first phase focuses on the undamaged structure subjected to single and multiple earthquakes; the effects of masonry infills on the seismic vulnerability of the steel frame were also considered. In the second phase, aftershock fragility curves were derived to investigate the seismic vulnerability of infilled steel frames with post-mainshock damage caused by mainshocks. Comparative analyses were conducted among the mainshock-damaged structures considering three post-mainshock damage levels, including no damage. The impact of aftershocks was then discussed for each mainshock-damage level in terms of the breakpoint that marks the onset of exceeding post-mainshock damage level, as well as the probability of exceeding of superior damage level due to more significant aftershocks. The evaluation of the efficiency of commonly used intensity measures of aftershocks was also carried out as part of the second phase of assessment.


2020 ◽  
Vol 41 (S1) ◽  
pp. s200-s201
Author(s):  
Mariana Melo ◽  
Raquel Bandeira ◽  
lio de Castro Giselle Dias ◽  
Braulio Couto

Background: Carbapenem-resistant GNB infections are a serious public health problem worldwide, particularly due to the high mortality associated with them and the low number of therapeutic options. One approach to this challenge is the development of antimicrobial stewardship programs. Objective: We evaluated the impact of a carbapenem restriction program on reducing of bacterial resistance in an intensive care unit (ICU). Methods: A retrospective study conducted in 2 phases in the 80-bed ICU of an acute-care public hospital in Minas Gerais, Brazil. The preintervention phase lasted 16 months (January 2018–April 2019) and the second phase (carbapenem restriction), after the intervention, lasted 4 months (May–August 2019). The intervention was defined as carbapenem-sparing and the use of meropenem was authorized in 3 situations: (1) treatment of serious infections documented by extended-spectrum β-lactamase–producing Enterobacteriacea (ESBL); (2) therapeutic failure with the use of another antimicrobial; and (3) infectious disease recommendation. Data were obtained through consultation of electronic medical records and microbiological results, as standardized by the CLSI, for patients with a >48-hour stay in the ICU and who met the criteria for healthcare-associated infection (HAI) according to the CDC NHSN definition. Results: Before the intervention, on average, 50 cultures were obtained with positive results for multidrug-resistant GNB–MER-GNB (SD, 12.2) and in the intervention phase, this number was 31 cultures (SD, 12.8; P = .010). Average carbapenem consumption decreased significantly with corresponding increase in cefepime consumption in the same period (Fig. 1). The ATB (DDD per 1,000 patient days) before the intervention for carbapenems was 110.6 (SD, 97.1) and for cefepime was 8.2 (SD, 5.9). In the intervention phase, the ATB for carbapenems was 44.7 (SD, 38.5; P = .015) and for cefepime it was 32.0 (SD, 20.3; P < .001). In terms of multidrug resistance rate, before the intervention, 95 of 149 of Acinetobacter (64%) were resistant and during the intervention, 13 of 30 Acinetobacter (43%) were resistant (P = .043). Other GNB (Klebsiella, Proteus, Escherichia coli, and Pseudomonas) reduced the resistance rate, but without statistical significance. We observed a reduction in the HAI rate per MDR-GNB (Fig. 2): before the intervention, it was 22.7 (SD, 5.5) and during the intervention phase it was 16.5 (SD, 7.7; P = .07), although this change did not reach statistical significance. Nevertheless, the ICU Klebsiella infection rate did significantly decrease; it was 5.5 (SD, 1.9) before the intervention and 2.4 (SD, 1.8) after the intervention (P = .009). Conclusions: Short-term carbapenem restriction may be an effective strategy to reduce the incidence of carbapenem-resistant GNB infections in the ICU. The scarce arsenal available for the treatment of MDR-GNB and the high mortality rate justify the growing need for stewardship programs in Brazilian ICUs.Funding: NoneDisclosures: None


2012 ◽  
Vol 9 (3) ◽  
pp. 1033-1040 ◽  
Author(s):  
M. Barlett ◽  
K. Zhuang ◽  
R. Mahadevan ◽  
D. Lovley

Abstract. Enhancing microbial U(VI) reduction with the addition of organic electron donors is a promising strategy for immobilizing uranium in contaminated groundwaters, but has yet to be optimized because of a poor understanding of the factors controlling the growth of various microbial communities during bioremediation. In previous field trials in which acetate was added to the subsurface, there were two distinct phases: an initial phase in which acetate-oxidizing, U(VI)-reducing Geobacter predominated and U(VI) was effectively reduced and a second phase in which acetate-oxidizing sulfate reducing bacteria (SRB) predominated and U(VI) reduction was poor. The interaction of Geobacter and SRB was investigated both in sediment incubations that mimicked in situ bioremediation and with in silico metabolic modeling. In sediment incubations, Geobacter grew quickly but then declined in numbers as the microbially reducible Fe(III) was depleted whereas the SRB grow more slowly and reached dominance after 30–40 days. Modeling predicted a similar outcome. Additional modeling in which the relative initial percentages of the Geobacter and SRB were varied indicated that there was little to no competitive interaction between Geobacter and SRB when acetate was abundant. Further simulations suggested that the addition of Fe(III) would revive the Geobacter, but have little to no effect on the SRB. This result was confirmed experimentally. The results demonstrate that it is possible to predict the impact of amendments on important components of the subsurface microbial community during groundwater bioremediation. The finding that Fe(III) availability, rather than competition with SRB, is the key factor limiting the activity of Geobacter during in situ uranium bioremediation will aid in the design of improved uranium bioremediation strategies.


2016 ◽  
Vol 13 (3) ◽  
pp. 841-863 ◽  
Author(s):  
H. Brenner ◽  
U. Braeckman ◽  
M. Le Guitton ◽  
F. J. R. Meysman

Abstract. It has been previously proposed that alkalinity release from sediments can play an important role in the carbonate dynamics on continental shelves, lowering the pCO2 of seawater and hence increasing the CO2 uptake from the atmosphere. To test this hypothesis, sedimentary alkalinity generation was quantified within cohesive and permeable sediments across the North Sea during two cruises in September 2011 (basin-wide) and June 2012 (Dutch coastal zone). Benthic fluxes of oxygen (O2), alkalinity (AT) and dissolved inorganic carbon (DIC) were determined using shipboard closed sediment incubations. Our results show that sediments can form an important source of alkalinity for the overlying water, particularly in the shallow southern North Sea, where high AT and DIC fluxes were recorded in near-shore sediments of the Belgian, Dutch and German coastal zone. In contrast, fluxes of AT and DIC are substantially lower in the deeper, seasonally stratified, northern part of the North Sea. Based on the data collected, we performed a model analysis to constrain the main pathways of alkalinity generation in the sediment, and to quantify how sedimentary alkalinity drives atmospheric CO2 uptake in the southern North Sea. Overall, our results show that sedimentary alkalinity generation should be regarded as a key component in the CO2 dynamics of shallow coastal systems.


2017 ◽  
Vol 888 ◽  
pp. 413-417 ◽  
Author(s):  
Zulaikha Abdullah ◽  
Sufizar Ahmad ◽  
Musfirah Ramli

Metal foams are a cellular structure that has a solid matrix made of metal and has pores in their structure. Metal foams offer excellent combination of properties which led researchers interested in investigation in recent years. Closed-cell stainless steel (SS316L) foams for biomedical application were prepared by space holder method and the physical and morphological properties of SS316L foams were studied. Stainless steel (SS316L) powders as metallic material, polyethylene glycol (PEG) as a binder and Urea as a space holder material were mixed homogenously to avoid the particle wrecked. This mixture was compacted using uniaxial pressing machine and pressurized to 8 tons to formed the green body. By using tube furnace, the SS316L foams was two-stage sintered, the first phase at 600°C for 2 hours to decompose the urea, and the second phase at 1000°C, 1100°C, and 1200°C respectively to sinter the steel. The porosity and density test was carried out by applying Archimedean principles, while morphological observation was done by using Field Emission Scanning Electron (FESEM). The samples with 40wt.% SS316L composition and sintered at temperature of 1100°C, leads to porosities of about 44.539% and show the potential as the best metal foams.


Retos ◽  
2015 ◽  
pp. 63-66
Author(s):  
Alejandro Muñoz López ◽  
José Antonio González Jurado

Objetivo: Examinar las diferencias cinemáticas del golpeo con empeine entre futbolistas expertos y sujetos inexpertos. Sujetos: Se analizaron 17 hombres de 17 a 21 años. Metodología: Se utilizó un sistema de fotogrametría 3D con cuatro cámaras. Los sujetos ejecutaron golpeos con el empeine a máxima potencia. Se analizó la Velocidad del Pie en el Impacto, la Máxima Extensión de Cadera, la Máxima Flexión de Rodilla y la Duración de las Fases del gesto. Resultados: Se hallaron diferencias significativas en la Velocidad del Pie de la pierna no hábil en el momento del impacto (m/s) (Expertos: 14,5±.52, Inexpertos: 12.5±.5; p<.001) y Máxima Extensión de Cadera (grados) (Expertos: 39.2±1.3, Inexpertos: 34.28±3.2; p<.001). También hubo diferencias significativas en la Duración de la Fase 2 en ambas piernas (p<.05). Conclusiones: El golpeo con el empeine total en fútbol presenta diferencias significativas entre grupos de diferente nivel tan solo en la pierna no dominante. Palabra clave: golpeo, fútbol, biomecánica, empeine.Abstract: T; Purpose: to examine kinematic differences of instep soccer kick between experienced and non-experienced soccer players. Subjects: 17 men between 17 and 21 years old. Methodology: a 3D film system with 4 cameras was used. Maximum power instep kicks were executed. It was analyzed feet velocity in the impact, maximum hip extension, maximum knee flexion and kick phases duration. Results: were found significant differences in feet velocity with non-dominant leg in the impact moment (m/s) (Experienced: 14.5±.52, Non-experienced: 12.5±.5; p<.001) and maximum hip extension (degrees) (Experienced: 39.2 ± 1.3, Non-experienced: 34.28±3.2; p<.001). Also were significant differences in the second phase duration in both legs (p<.05). Conclusions: Maximum instep soccer kick show significant differences between groups of different level only in non-dominant leg.Key words: kick, soccer, biomechanics, instep.


Sign in / Sign up

Export Citation Format

Share Document