scholarly journals Evaluation of biospheric components in Earth system models using modern and palaeo observations: the state-of-the-art

2013 ◽  
Vol 10 (7) ◽  
pp. 10937-10995 ◽  
Author(s):  
A. M. Foley ◽  
D. Dalmonech ◽  
A. D. Friend ◽  
F. Aires ◽  
A. Archibald ◽  
...  

Abstract. Earth system models are increasing in complexity and incorporating more processes than their predecessors, making them important tools for studying the global carbon cycle. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes, with coupled climate-carbon cycle models that represent land-use change simulating total land carbon stores by 2100 that vary by as much as 600 Pg C given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous model evaluation methodologies. Here we assess the state-of-the-art with respect to evaluation of Earth system models, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeo data and (ii) metrics for evaluation, and discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute towards the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but it is also a challenge, as more knowledge about data uncertainties is required in order to determine robust evaluation methodologies that move the field of ESM evaluation from "beauty contest" toward the development of useful constraints on model behaviour.

2013 ◽  
Vol 10 (12) ◽  
pp. 8305-8328 ◽  
Author(s):  
A. M. Foley ◽  
D. Dalmonech ◽  
A. D. Friend ◽  
F. Aires ◽  
A. T. Archibald ◽  
...  

Abstract. Earth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate–carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes.


2010 ◽  
Vol 3 (1) ◽  
pp. 61-97 ◽  
Author(s):  
K. Tachiiri ◽  
J. C. Hargreaves ◽  
J. D. Annan ◽  
A. Oka ◽  
A. Abe-Ouchi ◽  
...  

Abstract. By combining the strong points of general circulation models (GCMs), which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs), which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM) which can represent the outputs of a GCM-based Earth system model using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite) which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean including an ocean carbon cycle; a state of the art vegetation model (Sim-CYCLE); and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario. By adjusting the climate sensitivity of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (4.0 K) version of MIROC3.2. By tuning of the physical and biogeochemical parameters it was possible to reasonably reproduce the bulk physical and biogeochemical properties of previously published CO2 stabilisation scenarios for that model. As an example of an application of the LCM, the behavior of the high sensitivity version of MIROC3.2 (with 6.3 K climate sensitivity) is also demonstrated. Given the highly tunable nature of the model, we believe that the LCM should be a very useful tool for studying uncertainty in global climate change.


2018 ◽  
Vol 9 (2) ◽  
pp. 507-523 ◽  
Author(s):  
Steven J. Lade ◽  
Jonathan F. Donges ◽  
Ingo Fetzer ◽  
John M. Anderies ◽  
Christian Beer ◽  
...  

Abstract. Changes to climate–carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate–carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate–carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate–carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate–carbon feedback; and concentration–carbon feedbacks may be more sensitive to future climate change than climate–carbon feedbacks. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.


2021 ◽  
Author(s):  
Alexander J. Winkler ◽  
Ranga B. Myneni ◽  
Markus Reichstein ◽  
Victor Brovkin

<div> <div> <div> <p>The prevailing understanding of the carbon-cycle response to anthropogenic CO<sub>2 </sub>emissions suggests that it depends only on the magnitude of this forcing, not on its timing. However, a recent study (Winkler <em>et al</em>., <em>Earth System Dynamics</em>, 2019) demonstrated that the same magnitude of CO<sub>2 </sub>forcing causes considerably different responses in various Earth system models when realized following different temporal trajectories. Because the modeling community focuses on concentration-driven runs that do not represent a fully-coupled carbon-cycle-climate continuum, and the experimental setups are mainly limited to exponential forcing timelines, the effect of different temporal trajectories of CO<sub>2 </sub>emissions in the system is under-explored. Together, this could lead to an incomplete notion of the carbon-cycle response to anthropogenic CO<sub>2 </sub>emissions.</p> <p>We use the latest CMIP6 version of the Max-Planck-Institute Earth System Model (MPI-ESM1.2) with a fully-coupled carbon cycle to investigate the effect of emission timing in form of four drastically different pathways. All pathways emit an identical total of 1200 Pg C over 200 years, which is about the IPCC estimate to stay below 2 °K of warming, and the approximate amount needed to double the atmospheric CO<sub>2 </sub>concentration. The four pathways differ only in their CO<sub>2 </sub>emission rates, which include a constant, a negative parabolic (ramp-up/ramp-down), a linearly decreasing, and an exponentially increasing emission trajectory. These experiments are idealized, but designed not to exceed the observed maximum emission rates, and thus can be placed in the context of the observed system.</p> <p>We find that the resulting atmospheric CO<sub>2 </sub>concentration, after all the carbon has been emitted, can vary as much as 100 ppm between the different pathways. The simulations show that for pathways, where the system is exposed to higher rates of CO<sub>2 </sub>emissions early in the forcing timeline, there is considerably less excess CO<sub>2 </sub>in the atmosphere at the end. These pathways also show an airborne fraction approaching zero in the final decades of the simulation. At this point, the carbon sinks have reached a strength that removes more carbon from the atmosphere than is emitted. In contrast, the exponentially increasing pathway with high CO<sub>2 </sub>emission rates in the last decades of the simulation, the pathway usually studied, shows a fairly stable airborne fraction. We propose a new general framework to estimate the atmospheric growth rate of CO<sub>2 </sub>not only as a function of the emission rate, but also include the aspect of time the system has been exposed to excess CO<sub>2 </sub>in the atmosphere. As a result, the transient temperature response is a function not only of the cumulative CO<sub>2 </sub>emissions, but also of the time the system was exposed to the excess CO<sub>2</sub>. We also apply this framework to other Earth system models and observational records of CO<sub>2 </sub>concentration and emissions.</p> </div> </div> </div><div> <div> <div> <p>The Earth system is currently in a phase of increasing, nearly exponential CO<sub>2 </sub>forcing. The impact of excess CO<sub>2 </sub>exposure time could become apparent as we approach the point of maximum CO<sub>2 </sub>emission rate, affecting the achievability of the climate targets.</p> </div> </div> </div>


2009 ◽  
Vol 2 (1) ◽  
pp. 279-307 ◽  
Author(s):  
B. M. Fekete ◽  
W. M. Wollheim ◽  
D. Wisser ◽  
C. J. Vörösmarty

Abstract. Earth System model development is becoming an increasingly complex task. As scientists attempt to represent the physical and bio-geochemical processes and various feedback mechanisms in unprecedented detail, the models themselves are becoming increasingly complex. At the same time, the complexity of the surrounding IT infrastructure is growing as well. Earth System models must manage a vast amount of data in heterogeneous computing environments. Numerous development efforts are on the way to ease that burden and offer model development platforms that reduce IT challenges and allow scientists to focus on their science. While these new modeling frameworks (e.g. FMS, ESMF, CCA, OpenMI) do provide solutions to many IT challenges (performing input/output, managing space and time, establishing model coupling, etc.), they are still considerably complex and often have steep learning curves. The Next generation Framework for Aquatic Modeling of the Earth System (NextFrAMES, a revised version of FrAMES) have numerous similarities to those developed by other teams, but represents a novel model development paradigm. NextFrAMES is built around a modeling XML that lets modelers to express the overall model structure and provides an API for dynamically linked plugins to represent the processes. The model XML is executed by the NextFrAMES run-time engine that parses the model definition, loads the module plugins, performs the model I/O and executes the model calculations. NextFrAMES has a minimalistic view representing spatial domains and treats every domain (regardless of its layout such as grid, network tree, individual points, polygons, etc.) as vector of objects. NextFrAMES performs computations on multiple domains and interactions between different spatial domains are carried out through couplers. NextFrAMES allows processes to operate at different frequencies by providing rudimentary aggregation and disaggregation facilities. NextFrAMES was designed primarily for hydrological modeling purposes, but many of its functionality should be applicable for a wide range of land surface models. In its present capabilities NextFrAMES is probably inadequate to implement fully coupled Earth System models, but future versions with the guidance from Earth System developers might someday eliminate its limitations. Our intent with NextFrAMES is to initiate a dialog about new ways of expressing models that is less tied to the actual implementation and allow scientist to develop models at a more abstract level.


2018 ◽  
Author(s):  
Dominik Hülse ◽  
Sandra Arndt ◽  
Stuart Daines ◽  
Pierre Regnier ◽  
Andy Ridgwell

Abstract. We present the first version of OMEN-SED (Organic Matter ENabled SEDiment model), a new, one-dimensional analytical early diagenetic model resolving organic matter cycling and associated biogeochemical dynamics in marine sediments designed to be coupled to Earth system models. OMEN-SED explicitly describes organic matter (OM) cycling as well as associated dynamics of the most important terminal electron acceptors (i.e. O2, NO3, SO4) and methane (CH4), related reduced substances (NH4, H2S), macronutrients (PO4) and associated pore water quantities (ALK, DIC). Its reaction network accounts for the most important primary and secondary redox reactions, equilibrium reactions, mineral dissolution and precipitation, as well as adsorption and desorption processes associated with OM dynamics that affect the dissolved and solid species explicitly resolved in the model. To represent a redox-dependent sedimentary P cycle we also include a representation of the formation and burial of Fe-bound P and authigenic Ca-P minerals. Thus, OMEN-SED is able to capture the main features of diagenetic dynamics in marine sediments and, therefore, offers similar predictive abilities than a complex, numerical diagenetic model. Yet, its computational efficiency allows its coupling to global Earth system models and therefore the investigation of coupled global biogeochemical dynamics over a wide range of climate relevant timescales. This paper provides a detailed description of the new sediment model, an extensive sensitivity analysis, as well as an evaluation of OMEN-SED's performance through comprehensive comparisons with observations and results from a more complex numerical model. We find solid phase and dissolved pore water profiles for different ocean depths are reproduced with good accuracy and simulated terminal electron acceptor fluxes fall well within the range of globally observed fluxes. Finally, we illustrate its application in an Earth system model framework by coupling OMEN-SED to the Earth system model cGENIE and tune the OM degradation rate constants to optimise the fit of simulated benthic OM contents to global observations. We find simulated sediment characteristics of the coupled model framework, such as OM degradation rates, oxygen penetration depths and sediment-water interface fluxes are generally in good agreement with observations and in line with what one would expect on a global scale. Coupled to an Earth system model, OMEN-SED is thus a powerful tool that will not only help elucidate the role of benthic-pelagic exchange processes in the evolution and, in particular, the termination of a wide range of climate events, but will also allow a direct comparison of model output with the sedimentary record – the most important climate archive on Earth.


2020 ◽  
pp. 1-72
Author(s):  
Spencer K. Liddicoat ◽  
Andy J. Wiltshire ◽  
Chris D. Jones ◽  
Vivek K. Arora ◽  
Victor Brovkin ◽  
...  

AbstractWe present the compatible CO2 emissions from fossil fuel burning and industry, calculated from the historical and Shared Socioeconomic Pathway (SSP) experiments of nine Earth System Models (ESMs) participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The multi-model mean FF emissions match the historical record well and are close to the data-based estimate of cumulative emissions (392±63 GtC vs 400±20 GtC respectively). Only two models fall inside the observed uncertainty range; while two exceed the upper bound, five fall slightly below the lower bound, due primarily to the plateau in CO2 concentration in the 1940s. The ESMs’ diagnosed FF emission rates are consistent with those generated by the Integrated Assessment Models (IAMs) from which the SSPs’ CO2 concentration pathways were constructed; the simpler IAMs’ emissions lie within the ESMs’ spread for seven of the eight SSP experiments, the other being only marginally lower, providing confidence in the relationship between the IAMs’ FF emission rates and concentration pathways. The ESMs require fossil fuel emissions to reduce to zero and subsequently become negative in SSP1-1.9, SSP1-2.6, SSP4-3.4 and SSP5-3.4over. We also present the ocean and land carbon cycle responses of the ESMs in the historical and SSP scenarios. The models’ ocean carbon cycle responses are in close agreement, but there is considerable spread in their land carbon cycle responses. Land use and land cover change emissions have a strong influence over the magnitude of diagnosed fossil fuel emissions, with the suggestion of an inverse relationship between the two.


2016 ◽  
Vol 9 (9) ◽  
pp. 3483-3491 ◽  
Author(s):  
Michalis Christou ◽  
Theodoros Christoudias ◽  
Julián Morillo ◽  
Damian Alvarez ◽  
Hendrik Merx

Abstract. We examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing performance, offering extra flexibility to expose multiple levels of parallelism and achieve better scalability. The EMAC model atmospheric chemistry code (Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA)) was taskified with an offload mechanism implemented using OmpSs directives. The model was ported to the MareNostrum 3 supercomputer to allow testing with Intel Xeon Phi accelerators on a production-size machine. The changes proposed in this paper are expected to contribute to the eventual adoption of Cluster–Booster division and Many Integrated Core (MIC) accelerated architectures in presently available implementations of Earth system models, towards exploiting the potential of a fully Exascale-capable platform.


2020 ◽  
Author(s):  
Daniel M. Griffith ◽  
Colin Osborne ◽  
Erika J. Edwards ◽  
Seton Bachle ◽  
David J. Beerling ◽  
...  

SummaryProcess-based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics, but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass dominated ecosystems are broadly distributed across all vegetated continents and harbor large functional diversity, yet most Earth System Models (ESMs) summarize grasses into two generic PFTs based primarily on differences between temperate C3 grasses and (sub)tropical C4 grasses. Incorporation of species-level trait variation is an active area of research to enhance the ecological realism of PFTs, which form the basis for vegetation processes and dynamics in ESMs. Using reported measurements, we developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, and disturbance-related) of dominant lineages to improve ESM representations. Our method is fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage-based functional types (LFTs), situated between species-level trait data and PFT-level abstractions, thus providing a realistic representation of functional diversity and opening the door to the development of new vegetation models.


2013 ◽  
Vol 26 (22) ◽  
pp. 8744-8764 ◽  
Author(s):  
Pu Shao ◽  
Xubin Zeng ◽  
Koichi Sakaguchi ◽  
Russell K. Monson ◽  
Xiaodong Zeng

Abstract Eight Earth System Models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are evaluated, focusing on both the net carbon dioxide flux and its components and their relation with climatic variables (temperature, precipitation, and soil moisture) in the historical (1850–2005) and representative concentration pathway 4.5 (RCP4.5; 2006–2100) simulations. While model results differ, their median globally averaged production and respiration terms from 1976 to 2005 agree reasonably with available observation-based products. Disturbances such as land use change are roughly represented but crucial in determining whether the land is a carbon source or sink over many regions in both simulations. While carbon fluxes vary with latitude and between the two simulations, the ratio of net to gross primary production, representing the ecosystem carbon use efficiency, is less dependent on latitude and does not differ significantly in the historical and RCP4.5 simulations. The linear trend of increased land carbon fluxes (except net ecosystem production) is accelerated in the twenty-first century. The cumulative net ecosystem production by 2100 is positive (i.e., carbon sink) in all models and the tropical and boreal latitudes become major carbon sinks in most models. The temporal correlations between annual-mean carbon cycle and climate variables vary substantially (including the change of sign) among the eight models in both the historical and twenty-first-century simulations. The ranges of correlations of carbon cycle variables with precipitation and soil moisture are also quite different, reflecting the important impact of the model treatment of the hydrological cycle on the carbon cycle.


Sign in / Sign up

Export Citation Format

Share Document