scholarly journals Nutrient dynamics along a precipitation gradient in European beech forests

2013 ◽  
Vol 10 (7) ◽  
pp. 11899-11933 ◽  
Author(s):  
I. C. Meier ◽  
C. Leuschner

Abstract. Precipitation as a key determinant of forest productivity influences forest ecosystems also indirectly through alteration of the nutrient status of the soil, but this interaction is not well understood. Along a steep precipitation gradient (from 970 to 520 mm yr−1 over 150 km distance), we studied the consequences of reduced precipitation for the soil and biomass nutrient pools and dynamics in 14 mature European beech (Fagus sylvatica L.) forests on uniform geological substrate. We tested the hypotheses that lowered summer precipitation (1) is associated with less acid soils and a reduced accumulation of organic matter on the forest floor, and (2) reduces nutrient supply from the soil and leads to decreasing foliar and root nutrient concentrations. Soil acidity, the amount of forest floor organic matter, and the associated organic matter N and P pools decreased to about a half from wet to dry sites; the C/P and N/P ratios, but not the C/N ratio, of forest floor organic matter decreased. Net N mineralization (and nitrification) rate and the available P and K pools in the mineral soil did not change with decreasing precipitation. Foliar P and K concentrations (beech sun leaves) increased while N remained constant, resulting in decreasing foliar N/P and N/K ratios. N resorption efficiency increased toward the dry sites. We conclude that a reduction in summer rainfall significantly reduces the soil C, N and P pools but does not result in decreasing foliar N and P contents in beech. However, more effective tree-internal N cycling and the decreasing foliar N/P ratio towards the dry stands indicate that tree growth may increasingly be limited by N and not by P with decreasing precipitation.

2012 ◽  
Vol 9 (12) ◽  
pp. 5181-5197 ◽  
Author(s):  
C. Moni ◽  
D. Derrien ◽  
P.-J. Hatton ◽  
B. Zeller ◽  
M. Kleber

Abstract. Physical fractionation is a widely used methodology to study soil organic matter (SOM) dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF) and particle size-density fractionation (PSDF) on mineral soil samples from two European beech forests a decade after application of 15N labelled litter. Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM). Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.


2002 ◽  
Vol 32 (2) ◽  
pp. 344-352 ◽  
Author(s):  
P W Clinton ◽  
R B Allen ◽  
M R Davis

Stemwood production, N pools, and N availability were determined in even-aged (10, 25, 120, and >150-year-old) stands of a monospecific mountain beech (Nothofagus solandri var. cliffortioides (Hook. f.) Poole) forest in New Zealand recovering from catastrophic canopy disturbance brought about by windthrow. Nitrogen was redistributed among stemwood biomass, coarse woody debris (CWD), the forest floor, and mineral soil following disturbance. The quantity of N in stemwood biomass increased from less than 1 kg/ha in seedling stands (10 years old) to ca. 500 kg/ha in pole stands (120 years old), but decreased in mature stands (>150 years old). In contrast, the quantity of N stored in CWD declined rapidly with stand development. Although the mass of N stored in the forest floor was greatest in the pole stands and least in the mature stands, N availability in the forest floor did not vary greatly with stand development. The mass of N in the mineral soil (0–100 mm depth) was also similar for all stands. Foliar N concentrations, net N mineralization, and mineralizable N in the mineral soil (0–100 mm depth) showed similar patterns with stage of stand development, and indicated that N availability was greater in sapling (25 years old) and mature stands than in seedling and pole stands. We conclude that declining productivity in older stands is associated more with reductions in cation availability, especially calcium, than N availability.


1992 ◽  
Vol 22 (12) ◽  
pp. 1895-1900 ◽  
Author(s):  
Richard D. Boone

Nitrogen (N) mineralization potential and net N mineralization insitu were measured monthly over 7 months for the forest floor horizons (Oi, Oe, Oa) and mineral soil (0–15 cm) of a pine stand and the mineral soil (0–15 cm) of a maple stand in Massachusetts, United States. In all cases, N mineralization potential per unit organic matter (anaerobic laboratory incubation) varied significantly by sampling month but was unrelated to the seasonal pattern for net N mineralization (buried-bag method). The organic horizons in the pine stand exhibited the most variable N mineralization potential, with the Oe horizon having more than a fourfold seasonal range. For the pine stand the Oe horizon also had the highest N mineralization potential (per unit organic matter) and the highest net N mineralization insitu (per unit area). In general, temporal and depth-wise variability should be considered when sites are assessed with respect to the pool of mineralizable N.


2012 ◽  
Vol 88 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Richard Kabzems

Declines in forest productivity have been linked to losses of organic matter and soil porosity. To assess how removal of organic matter and soil compaction affect short-term ecosystem dynamics, pre-treatment and year 1, 5 and 10 post-treatment soil properties and post-treatment plant community responses were examined in a boreal trembling aspen (Populus tremuloidesMichx.)-dominated ecosystem in northeastern British Columbia. The experiment used a completely randomized design with three levels of organic matter removal (tree stems only; stems and slash; stems, slash and forest floor) and three levels of soil compaction (none, intermediate [2-cm impression], heavy [5-cm impression]). Removal of the forest floor initially stimulated aspen regeneration and significantly reduced height growth of aspen (198 cm compared to 472–480 cm) as well as white spruce (Picea glauca [Moench] Voss) height (82 cm compared to 154–156 cm). The compaction treatments had no effect on aspen regeneration density. At Year 10, heights of both aspen and white spruce were negatively correlated with upper mineral soil bulk density and were lowest on forest floor + whole tree removal treatments. Recovery of soil properties was occurring in the 0 cm to 2 cm layer of mineral soil. Bulk density values for the 0 cm to 10 cm depth remained above 86% of the maximum bulk density for the site, a soil condition where reduced tree growth can be expected.


Radiocarbon ◽  
2006 ◽  
Vol 48 (3) ◽  
pp. 337-353 ◽  
Author(s):  
Femke H Tonneijck ◽  
Johannes van der Plicht ◽  
Boris Jansen ◽  
Jacobus M Verstraten ◽  
Henry Hooghiemstra

Volcanic ash soils (Andosols) may offer great opportunities for paleoecological studies, as suggested by their characteristic accumulation of organic matter (OM). However, understanding of the chronostratigraphy of soil organic matter (SOM) is required. Therefore, radiocarbon dating of SOM is necessary, but unfortunately not straightforward. Dating of fractions of SOM obtained by alkali-acid extraction is promising, but which fraction (humic acid or humin) renders the most accurate 14C dates is still subject to debate. To determine which fraction should be used for 14C dating of Andosols and to evaluate if the chronostratigraphy of SOM is suitable for paleoecological research, we measured 14C ages of both fractions and related calibrated ages to soil depth for Andosols in northern Ecuador. We compared the time frames covered by the Andosols with those of peat sequences nearby to provide independent evidence. Humic acid (HA) was significantly older than humin, except for the mineral soil samples just beneath a forest floor (organic horizons), where the opposite was true. In peat sections, 14C ages of HA and humin were equally accurate. In the soils, calibrated ages increased significantly with increasing depth. Age inversions and homogenization were not observed at the applied sampling distances. We conclude that in Andosols lacking a thick organic horizon, dating of HA renders the most accurate results, since humin was contaminated by roots. On the other hand, in mineral soil samples just beneath a forest floor, humin ages were more accurate because HA was then contaminated by younger HA illuviated from the organic horizons. Overall, the chronostratigraphy of SOM in the studied Andosols appears to be suitable for paleoecological research.


1997 ◽  
Vol 13 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Nicholas C. Songwe ◽  
F. E. Fasehun ◽  
D. U. U. Okali

ABSTRACTThe variations in macronutrient concentrations of the leaves of Terminalia superba and Pycanthus angolensis were studied and the concentrations of nutrients in leaves before abscission were compared with those after abscission. The amounts of nutrients returned to the forest floor were also computed from litter fall data at the start of maximum annual fall in the Reserve. With the exception of potassium in Pycanthus angolensis, there were significant variations in the nutrient concentrations of the two species with the time of year. With increasing leaf age the concentration of nitrogen, phosphorus, potassium and magnesium declined in Terminalia superba while magnesium concentration decreased in Pycanthus angolensis leaves. Furthermore, calcium showed an increasing concentration in Terminalia superba with increase in leaf age. The concentrations of nitrogen, phosphorus and potassium decreased before leaf fall. Estimated losses in nitrogen phosphorus and potassium before abscission were 44, 53 and 50%, respectively, whereas generally there was an increase (40%) in the concentration of calcium at leaf fall. Magnesium did not follow a definite pattern. The return of calcium through litter fall to the forest floor was the greatest of all the major elements. The distribution and variation of foliar nutrient concentrations in the leaves of Terminalia superba and Pycanthus angolensis and the importance of the amount of litter and the concentration of the various nutrients in the influencing soil fertility are discussed.


1984 ◽  
Vol 14 (6) ◽  
pp. 763-767 ◽  
Author(s):  
C. Anthony Federer

Organic content of the forest floor decreases for several years after clear-cutting, and then slowly recovers. Thickness, bulk density, organic matter, and nitrogen content of forest floors were measured for 13 northern hardwood stands in the White Mountains of New Hampshire. Stands ranged from 1 to about 100 years in age. Forest-floor thickness varied significantly with stand age, but bulk density, organic fraction, and nitrogen fraction were independent of age. Total organic content of the forest floor agreed very well with data from Covington's (W. W. Covington 1981. Ecology, 62: 41–48) study of the same area. Both studies indicated that mature forest floors have about 80 Mg organic matter•ha−1 and 1.9 Mg nitrogen•ha−1. Within 10 or 15 years after cutting, the organic matter content of the floor decreases to 50 Mg•ha−1, and its nitrogen content to 1.1 Mg•ha−1. The question whether the decrease is rapid and the minimum broad and flat, or if the decrease is gradual and the minimum sharp, cannot be answered. The subsequent increase to levels reached in mature forest requires about 50 years. Some of the initial decrease in organic matter and nitrogen content of the forest floor may be caused by organic decomposition and nitrogen leaching, but mechanical and chemical mixing of floor into mineral soil, during and after the harvest operation, may also be important. The difference is vital with respect to maintenance of long-term productivity.


2020 ◽  
Author(s):  
Stephanie Rehschuh ◽  
Michael Dannenmann

<p>Drought-sensitive European beech forests are increasingly challenged by climate change. Admixing other, preferably more deep-rooting, tree species has been proposed to increase the resilience of beech forests to summer drought. This might not only alter soil water dynamics and availability, but also soil organic carbon (SOC) and total nitrogen (TN) storage in soils. Since information of these effects is scattered, our aim was to synthesize results from studies that compared SOC/TN stocks of beech monocultures with those of mixed beech stands as well as of other monocultures. We conducted a meta-analysis including 40 studies with 208, 231 and 166 observations for forest floor, mineral soil and the total soil profile, respectively. Pure conifer stands had higher SOC stocks compared to beech in general, especially in the forest floor with up to 200% (larch forests). Other broadleaved tree species (ash, oak, lime, maple, hornbeam) showed in comparison to beech lower SOC storage in the forest floor, with little impact on total stocks.  Similarly, for mixed beech-conifer stands we found significantly increased SOC stocks of >10% and a small increase in TN stocks of approx. 4% compared to beech monocultures, which means a potential SOC storage increase of >0.1 t ha<sup>-1</sup>yr<sup>-1 </sup>(transformation of mineral soil to 100 cm depth). In contrast, mixed beech-broadleaved stands did not show a significant change in total SOC stocks. Currently, the influence climatic and soil parameters on SOC changes due to admixture of other tree species is analyzed based on this dataset. This is expected to facilitate an assessment which mixtures with beech have the largest potential towards increasing SOC stocks.</p>


2006 ◽  
Vol 82 (6) ◽  
pp. 844-859 ◽  
Author(s):  
Brian D Titus ◽  
Cindy E Prescott ◽  
Doug G Maynard ◽  
Alan K Mitchell ◽  
Robert L Bradley ◽  
...  

The MASS (Montane Alternative Silvicultural Systems) trial was established in the coastal mountains of British Columbia to compare clearcut, patch cut, green tree and shelterwood systems. A number of studies were carried out at the MASS trial to determine the extent to which these variable levels of stand retention retained old-growth attributes of N cycling and associated ecological processes. Harvesting led to increases in N mineralization in the forest floor (2×) and mineral soil (10×), and fluxes of N through the upper 25 cm of mineral soil (2× to 3×). However, fluxes of N were not large (< 0.35 kg ha-1 per growing season). Nitrogen mineralized was predominantly ammonium and not nitrate in the forest floor (> 95% in all but clearcut, > 75% in clearcut) and upper mineral soil horizon (42–86%). The nitrate component came from heterotrophic decomposition of organic matter, not conversion of ammonium to nitrate by autotrophs, and nitrate increases resulted from decreased gross nitrate consumption with harvesting, rather than increased nitrate production. The increases in soil N availability resulting from harvesting were reflected in only slight increases in seedling foliar N concentrations for two to four years after logging (peak of ~ 2% for western hemlock and ~ 1.6% for amabilis fir) before decreasing to below deficiency thresholds for both species. Overall, estimated losses of N from the rooting zone after harvesting (1 kg ha-1 yr-1) were minimal in comparison to estimated N inputs (4 kg ha-1 yr-1), N exports in logs at harvesting (250 kg ha-1) and soil reserves (11 400 kg ha-1). Although unlikely to affect future site productivity, losses of N could be reduced somewhat through the use of shelterwood harvesting. Key words: alternative silvicultural systems, variable retention harvesting, nitrogen cycling, litterfall, decomposition, nitrification, N mineralization, microbial ecology, leaching, foliar N, Abies amabilis, Tsuga heterophylla, Thuja plicata


2004 ◽  
Vol 34 (4) ◽  
pp. 800-809 ◽  
Author(s):  
J M Kranabetter ◽  
K D Coates

Silviculture systems (clear-cut, partial-cut, and unharvested forest) were compared 9–10 years after harvesting to determine their effects on conifer nutrition and the availability of soil resources, especially nitrogen. These results were used to discuss the effects of silviculture systems on tree growth in relation to the more commonly described effects of light. Differences in soil properties across the silviculture treatments were most apparent in the forest floor. Depth and C/N ratio of the forest floor had decreased slightly in clearcuts, and forest-floor moisture was highest under partial-cut forest. Despite these differences in soil chemistry and soil moisture, no differences were detected in mineralizable N (anaerobic incubation) or in situ net N mineralization among treatments. Height growth and foliar mass were reduced under the low-light conditions of the partial-cut forest, but there were no differences in foliar N concentrations of hybrid white spruce (Picea glauca (Moench) Voss × Picea sitchensis (Bong.) Carrière), western redcedar (Thuja plicata Dougl. ex D. Don), or western hemlock (Tsuga heterophylla (Raf.) Sarg.) saplings. Mature western hemlock trees in partial-cut forest also had concentrations of foliar N equal to that of mature trees in the unharvested forest. Overall, we detected only minor effects of silviculture systems on soils after 10 years, and we conclude that light availability is likely more responsible for the current differences in tree growth.


Sign in / Sign up

Export Citation Format

Share Document