Leaf nutrient dynamics of two tree species and litter nutrient content in Southern Bakundu Forest Reserve, Cameroon

1997 ◽  
Vol 13 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Nicholas C. Songwe ◽  
F. E. Fasehun ◽  
D. U. U. Okali

ABSTRACTThe variations in macronutrient concentrations of the leaves of Terminalia superba and Pycanthus angolensis were studied and the concentrations of nutrients in leaves before abscission were compared with those after abscission. The amounts of nutrients returned to the forest floor were also computed from litter fall data at the start of maximum annual fall in the Reserve. With the exception of potassium in Pycanthus angolensis, there were significant variations in the nutrient concentrations of the two species with the time of year. With increasing leaf age the concentration of nitrogen, phosphorus, potassium and magnesium declined in Terminalia superba while magnesium concentration decreased in Pycanthus angolensis leaves. Furthermore, calcium showed an increasing concentration in Terminalia superba with increase in leaf age. The concentrations of nitrogen, phosphorus and potassium decreased before leaf fall. Estimated losses in nitrogen phosphorus and potassium before abscission were 44, 53 and 50%, respectively, whereas generally there was an increase (40%) in the concentration of calcium at leaf fall. Magnesium did not follow a definite pattern. The return of calcium through litter fall to the forest floor was the greatest of all the major elements. The distribution and variation of foliar nutrient concentrations in the leaves of Terminalia superba and Pycanthus angolensis and the importance of the amount of litter and the concentration of the various nutrients in the influencing soil fertility are discussed.

Horticulturae ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 58 ◽  
Author(s):  
Thomas E. Marler ◽  
Murukesan V. Krishnapillai

The need for improved knowledge on conservation and management of cycad species has generated recent interest in compiling a database on leaf nutrient concentrations. However, the sampling protocols have not been consistent among reports and the influences of some plant and habitat traits on the plasticity of cycad leaf nutrient concentrations has not been adequately determined. We used Cycas micronesica K.D. Hill trees to determine the role of incident light level and leaf age on leaflet content of 11 essential elements. Shade leaves exhibited increased mass-based concentration for nitrogen, phosphorus, and potassium above that of sun leaves. Shade leaves exhibited decreased area-based concentration for all of the macro- and micronutrients below that of sun leaves. Mass-based concentration of nitrogen, phosphorus, and potassium decreased with leaf age, and that of calcium, magnesium, iron, manganese, and zinc increased with leaf age. These findings indicate the relative leaf age and the amount of shade or incident light at the leaf level must be recorded and reported for leaf tissue studies in cycads in order to reduce ambiguity and ensure repeatability.


1994 ◽  
Vol 24 (3) ◽  
pp. 542-549 ◽  
Author(s):  
J.W. Fyles ◽  
B. Côté ◽  
F. Courchesne ◽  
W.H. Hendershot ◽  
S. Savoie

Application of base cation fertilizers is widely used to ameliorate decline symptoms in hardwood forests in southern Quebec, but little is known about the effects of fertilization on nutrient cycling. Control and fertilized plots in a sugar maple (Acersaccharum Marsh.) dominated stand were monitored over a 4-year period to determine the effects of fertilization on exchangeable soil base cations in soil, foliar nutrient concentrations, and fluxes of N, K, Ca, and Mg in litter fall and throughfall. Fertilization had a large, immediate effect on exchangeable K, whereas effects on Ca and Mg were delayed and restricted to the organic forest floor, presumably because of the lower solubility of the limestone-based Ca and Mg components of the fertilizer. Fertilization raised pH in the organic forest floor the second and third years after application but had no effect in the B horizon. Foliar K, Ca, and Mg were elevated in the year of fertilization, but foliar concentrations of Ca and Mg did not differ from, or were lower than, controls in following years. Litter-fall K flux was increased by fertilization, but litter-fall Ca and Mg fluxes and all through-fall base cation fluxes were unaffected. In control plots, nutrient concentrations in soil remained relatively constant throughout the study, but foliar concentrations and, in particular, litter-fall fluxes varied widely from year to year. This natural variation caused control plots to shift from a state of deficiency in N, Ca, and Mg to a nutrient-sufficient state between the first and second years of study. Fertilization effects are superimposed on a naturally variable nutrient cycling system, and controls on this variability must be understood if fertilizer response is to be accurately predicted.


1995 ◽  
Vol 11 (2) ◽  
pp. 189-203 ◽  
Author(s):  
Peter M. Vitousek ◽  
Grant Gerrish ◽  
Douglas R. Turner ◽  
Lawrence R. Walker ◽  
Dieter Mueller-Dombois

ABSTRACTThe mass of fine litterfall and nutrient circulation through litterfall were determined in four Melrosideros polymorpha/Cibotium spp.-dominated rainforests that differed in substrate age, parent material texture and annual precipitation on Kilauea and Mauna Loa volcanoes on the island of Hawaii. Three of the sites had rates of litterfall of 5.2 Mg ha−1 y−1; the fourth, which was on the most fertile soil, produced 7.0 Mg ha−1 y−1 of litterfall with higher concentrations of nitrogen and phosphorus. Tree ferns of the genus Cibotium cycled relatively large amounts of nitrogen, phosphorus and potassium through litterfall; their contribution to nutrient circulation was disproportionate to their mass in the forest, or in litterfall. The forest on the youngest substrate, which also had the lowest concentrations of nitrogen in litterfall, was fertilized with complete factorial combinations of nitrogen, phosphorus and a treatment consisting of all other plant nutrients. Additions of nitrogen increased the quantity and nitrogen concentration in litterfall during the second year following the initiation of fertilization, while no other treatment had a significant effect. Additions of nitrogen had no effect on litterfall mass or nutrient concentrations in the most nutrient-rich site.


1977 ◽  
Vol 25 (1) ◽  
pp. 47
Author(s):  
RW Rogers ◽  
WE Westman

The plant components and chemical composition of litter fall and the litter layer in a forest growing on deep, nutrient-poor sands were examined on North Stradbroke Island, south-eastern Queensland. The seasonal distribution of litter fall was examined over a 26-month period. While the total litter fall was greatest during summer months, the dominant tree species differed in their individual patterns of litter fall. Eucalyptus signata showed a single summer peak for leaf fall while E. umbra exhibited one peak in early summer and another in autumn. The possibility is discussed that these and other temporal differences are evolutionary expressions of niche differentiatibn to reduce competition between species in the ecosystem. The total litter fall averaged 640 g m-1 yr-1 and the accumulated forest floor mass totalled 2700 g m-2. Total nutrient pools and nutrient inputs in litter fall are presented. A litter half-life of 2.9 years is estimated, a figure close to the half-life of most of the nutrients in the litter. Manganese appears to be markedly concentrated in eucalypt leaves before they fall. Only sodium, potassium, copper and chloride appear to be leached easily from leaves slashed from trees and left on the forest floor. Patterns of litter production and decay in this subtropical forest fit within trends extrapolated from temperate Eucalyptus-dominated communities studied to date.


Horticulturae ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 33 ◽  
Author(s):  
Thomas E. Marler ◽  
Murukesan V. Krishnapillai

Cycas micronesica K.D. Hill trees on the island of Yap were used to determine the influence of position along the leaf rachis on macro- and micro-nutrient concentrations and how leaf age affected the results. The outcomes revealed improvements to sampling protocols for future cycad leaf research. The concentration of every element except carbon and copper was influenced by leaflet position along the rachis. Most elements exhibited similar patterns for the oldest and youngest leaves on a tree, but the influence of position along the rachis for nitrogen, phosphorus, calcium, zinc, and boron was highly contrasting for old versus young leaves. The elements with the greatest variability along the rachis were potassium, phosphorus, manganese, and zinc, with the difference in basal and terminal leaflets as great as four-fold. Sampling leaflets at one position on a cycad leaf may generate inaccurate elemental concentration results for most essential nutrients other than carbon and copper. We have added position of sampled leaflets within leaves as a mandatory component of what is recorded and reported for future cycad leaf tissue analyses. Leaflets that span the full length of the rachis should be included in cycad leaf samples that are collected for tissue analysis.


1966 ◽  
Vol 46 (6) ◽  
pp. 577-582 ◽  
Author(s):  
E. A. Grant ◽  
A. A. MacLean

High levels of both N and K from fertilizer were required to obtain optimum yield of timothy and also to maintain timothy as the dominant species in a grass sod. Phosphorus was required in relatively small amounts. Timothy degenerated when an imbalance of N and K was induced through fertilization and did so most rapidly when N was applied without K. Increasing N applications generally increased N content but the extent of the increase was modified when K was also applied, similarly K application increased K content but levels were modified downward when N was also applied. P content was affected only slightly by P application but levels were lowered when yields were increased by a combination of N and K. Critical nutrient concentrations of 1.6, 0.20, and 1.2% for N, P, and K respectively were determined for first-crop timothy cut at the fully headed stage. Higher levels of N and P were observed in second-cut material.


1986 ◽  
Vol 16 (5) ◽  
pp. 1109-1112 ◽  
Author(s):  
B. G. Lockaby ◽  
Jane Ellen Taylor-Boyd

Dry weight and N, P, K, Ca, and Mg concentrations were monitored in the litter fall and forest floor of a loblolly pine (Pinustaeda) plantation in north Louisiana for 2 years. Dry weights of both litter fall and forest floor were statistically stable during the sampling period, possibly indicating steady-state conditions. A comparison of litter fall with forest floor weights indicated rapid decomposition (floor turnover = 1.5 years) relative to that of other loblolly pine systems.


2013 ◽  
Vol 10 (7) ◽  
pp. 11899-11933 ◽  
Author(s):  
I. C. Meier ◽  
C. Leuschner

Abstract. Precipitation as a key determinant of forest productivity influences forest ecosystems also indirectly through alteration of the nutrient status of the soil, but this interaction is not well understood. Along a steep precipitation gradient (from 970 to 520 mm yr−1 over 150 km distance), we studied the consequences of reduced precipitation for the soil and biomass nutrient pools and dynamics in 14 mature European beech (Fagus sylvatica L.) forests on uniform geological substrate. We tested the hypotheses that lowered summer precipitation (1) is associated with less acid soils and a reduced accumulation of organic matter on the forest floor, and (2) reduces nutrient supply from the soil and leads to decreasing foliar and root nutrient concentrations. Soil acidity, the amount of forest floor organic matter, and the associated organic matter N and P pools decreased to about a half from wet to dry sites; the C/P and N/P ratios, but not the C/N ratio, of forest floor organic matter decreased. Net N mineralization (and nitrification) rate and the available P and K pools in the mineral soil did not change with decreasing precipitation. Foliar P and K concentrations (beech sun leaves) increased while N remained constant, resulting in decreasing foliar N/P and N/K ratios. N resorption efficiency increased toward the dry sites. We conclude that a reduction in summer rainfall significantly reduces the soil C, N and P pools but does not result in decreasing foliar N and P contents in beech. However, more effective tree-internal N cycling and the decreasing foliar N/P ratio towards the dry stands indicate that tree growth may increasingly be limited by N and not by P with decreasing precipitation.


HortScience ◽  
2003 ◽  
Vol 38 (1) ◽  
pp. 71-74 ◽  
Author(s):  
Sven Verlinden

To observe changes in the nutritional status of corollas during development and senescence, Petunia ×hybrida cv. Mitchell corollas were analyzed for macronutrient and micronutrient content, dry weight, fresh weight, and ethylene production. Carbon content decreased at slightly lower rates than dry weight during corolla development between anthesis and senescence, while fresh weight and ethylene production followed patterns expected of climacteric flowers. Nitrogen, phosphorus, and potassium content declined during development. Both phosphorus and potassium content gradually declined throughout development with overall losses of about 75% and 40%, respectively. Nitrogen content declined 50% during development but losses occurred only during the final stages of senescence. No significant changes were observed in sulfur, calcium, magnesium, and micronutrient content of the corollas during development. Most elements were present in much lower concentrations in corollas than in leaves. The concentrations of calcium, magnesium, and manganese were about 1-, 5-, and 15-fold lower in corollas than in leaves, respectively. Results indicate that remobilization of selected macronutrients from corollas occurred before and during senescence. Taken together with the presence of low concentrations of macronutrients, my data support the contention that petunia corollas are nutritionally in expensive and therefore easily disposable organs.


1987 ◽  
Vol 17 (12) ◽  
pp. 1496-1506 ◽  
Author(s):  
M. G. Weber

Decomposition, litter fall, and nutrient and organic matter turnover rates were determined in five eastern Ontario jack pine (Pinusbanksiana Lamb.) stands having various burning histories, including wildfire. The stands included a 65-year-old age-class (stand No. 1), two stands within this age-class that were treated with nonlethal understorey fires in 1962 and 1963 (stand Nos. 2 and 3, respectively), a 21-year-old age-class (stand No. 4), and an 8-year-old age-class (stand No. 5) created by experimental burning plots within the 21-year-old age-class. Overstorey and understorey litter decomposition was assessed separately using the litterbag (1-mm mesh size) technique over a 2-year period. Overstorey litter weight loss did not vary among stands and understorey litter lost significantly more weight (P < 0.05) in the older age-classes (stands 1,2, and 3) compared with the younger stands (stands 4 and 5). Litterbag nutrient dynamics between overstorey and understorey were significantly different (P < 0.05) for P, K, and Cain all stands. Magnesium and N dynamics were the same in both litter types on all treatments, as was Fe, except in the 65-year-old stand where significantly more Fe was accumulated in understorey litter (P < 0.04) at the end of the litterbag exposure period. Three-year averages of annual litter fall ranged from 119 kg•ha−1•year−1 in the 8-year-old age-class to 4182 kg•ha−1•year−1 in the older stands. Nutrient inputs through litter fall reflect the developmental stage occupied by the younger stands along a continuum leading to equilibrium conditions of the 65-year-old age-class. Forest floor nutrient and organic matter residence times (or annual fractional turnover) were longest (least amount cycled) in the 8-year-old stand (57.6 years for organic matter), indicating harsh environmental controls over nutrient dynamics. Recovery for the 21-year-old age-class to turnover rates approaching equilibrium conditions (10-year residence time for organic matter) was rapid, demonstrating ecosystem stability in its interaction with fire. Detrimental effects on ecosystem processes can be expected if a stand-replacing fire recurs during early stages of jack pine ecosystem development.


Sign in / Sign up

Export Citation Format

Share Document