scholarly journals A novel salinity proxy based on Na incorporation into foraminiferal calcite

2013 ◽  
Vol 10 (3) ◽  
pp. 6039-6063
Author(s):  
J. C. Wit ◽  
L. J. de Nooijer ◽  
M. Wolthers ◽  
G. J. Reichart

Abstract. Salinity and temperature determine seawater density and differences in both thereby control global themohaline circulation. Whereas numerous proxies have been calibrated and applied to reconstruct temperature, a direct and independent proxy for salinity is still missing. Ideally, a new proxy for salinity should target one of the direct constituents of dissolved salt, such as [Na+] or [Cl−]. This study investigates the impact of salinity on foraminiferal Na/Ca values by laser ablation ICP-MS analyzes of specimens of the benthic foraminifer Ammonia tepida cultured at a range of salinities (30.0–38.6). Foraminifera at lower salinities (30.0 and 32.5) added more chambers (10–11) to their test over the course of the experiment than foraminifera cultured under higher salinity (36.1, 7–8 chambers, and 38.6, 6–7 chambers), suggesting that lower salinity promotes growth rates in this species. The Na/Ca of cultured specimens correlates significantly with seawater salinity (Na/Ca = 0.22S − 0.75, R2 = 0.96, p < 0.01) and size. Values for Na/Ca and DNa vary between 5.17 and 9.29 mmol mol−1 and 0.12–0.16 × 10−3, which is similar to inorganic precipitated calcite. The significant correlation between test size and Na/Ca results from co-variation with salinity. This implies that foraminiferal Na/Ca may well be a robust and independent proxy for salinity, enabling independent salinity reconstruction. The quantified effect of salinity on Mg/Ca in our culture experiment, furthermore allows a direct correction for the bias in Mg/Ca based temperature reconstructions caused by differences in salinity.

2013 ◽  
Vol 10 (10) ◽  
pp. 6375-6387 ◽  
Author(s):  
J. C. Wit ◽  
L. J. de Nooijer ◽  
M. Wolthers ◽  
G. J. Reichart

Abstract. Salinity and temperature determine seawater density, and differences in both thereby control global thermohaline circulation. Whereas numerous proxies have been calibrated and applied to reconstruct temperature, a direct and independent proxy for salinity is still missing. Ideally, a new proxy for salinity should target one of the direct constituents of dissolved salt, such as [Na&amp;plus;] or [Cl−]. This study investigates the impact of salinity on foraminiferal Na/Ca values by laser ablation ICP-MS analyses of specimens of the benthic foraminifer Ammonia tepida cultured at a range of salinities (30.0–38.6). Foraminifera at lower salinities (30.0 and 32.5) added more chambers (10–11) to their test over the course of the culturing experiment than those maintained at higher salinities (36.1, 7–8 chambers, and 38.6, 6–7 chambers), suggesting that growth rates in this species are promoted by lower salinities. The Na/Ca of cultured specimens correlates significantly with seawater salinity (Na/Ca = 0.22S–0.75, R2 = 0.96, p < 0.01) and size. Values for Na/Ca and DNa vary between 5.17 and 9.29 mmol mol−1 and 0.12–0.16 × 10−3, which are similar to values from inorganic precipitation experiments. The significant correlation between test size and Na/Ca results from co-variation with salinity. This implies that foraminiferal Na/Ca could serve as a robust and independent proxy for salinity, enabling salinity reconstructions independent of calcitic δ18O.


2020 ◽  
Vol 35 (7) ◽  
pp. 1340-1350 ◽  
Author(s):  
Agata Jagielska ◽  
Anna Ruszczyńska ◽  
Ewa Bulska ◽  
Barbara Wagner

Oven drying and freeze drying may alter the elemental composition of soft tissues subjected to LA-ICP-MS or ICP-MS analysis.


Geology ◽  
2011 ◽  
Vol 39 (11) ◽  
pp. 1039-1042 ◽  
Author(s):  
M. Raitzsch ◽  
E.C. Hathorne ◽  
H. Kuhnert ◽  
J. Groeneveld ◽  
T. Bickert

2017 ◽  
Author(s):  
Amy K. Plechacek ◽  
◽  
Madeline E. Schreiber ◽  
John A. Chermak ◽  
Tracy L. Bank

Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 77
Author(s):  
Davide Spanu ◽  
Gilberto Binda ◽  
Marcello Marelli ◽  
Laura Rampazzi ◽  
Sandro Recchia ◽  
...  

A laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) based method is proposed for the quantitative determination of the spatial distribution of metal nanoparticles (NPs) supported on planar substrates. The surface is sampled using tailored ablation patterns and the data are used to define three-dimensional functions describing the spatial distribution of NPs. The volume integrals of such interpolated surfaces are calibrated to obtain the mass distribution of Ag NPs by correlation with the total mass of metal as determined by metal extraction and ICP–MS analysis. Once this mass calibration is carried out on a sacrificial sample, quantifications can be performed over multiple samples by a simple micro-destructive LA–ICP–MS analysis without requiring the extraction/dissolution of metal NPs. The proposed approach is here tested using a model sample consisting of a low-density polyethylene (LDPE) disk decorated with silver NPs, achieving high spatial resolution over cm2-sized samples and very high sensitivity. The developed method is accordingly a useful analytical tool for applications requiring both the total mass and the spatial distribution of metal NPs to be determined without damaging the sample surface (e.g., composite functional materials and NPs, decorated catalysts or electrodic materials).


Author(s):  
Andrew Kataba ◽  
Shouta M. M. Nakayama ◽  
Hokuto Nakata ◽  
Haruya Toyomaki ◽  
Yared B. Yohannes ◽  
...  

Lead (Pb) is a metal toxicant of great public health concern. The present study investigated the applicability of the rat incisor in Pb exposure screening. The levels of lead in teeth (Pb-T) in the crown and root of incisors in laboratory Pb-exposed Sprague Dawley rats were quantified using inductively coupled plasma mass spectrometry (ICP-MS). The crown accumulated much Pb-T than the root of the Sprague Dawley rat incisor. The levels of lead in blood (Pb-B) were positively correlated with the Pb-T in the crown and root incisors of the Sprague Dawley rats. As an application of the Pb-T crown results in experimental rats, we subsequently analyzed the Pb-T in the crown incisors of Pb-exposed wild rats (Rattus rattus) sampled from residential sites within varying distances from an abandoned lead–zinc mine. The Pb-T accumulation in the crown of incisors of R. rattus rats decreased with increased distance away from the Pb–Zn mine. Furthermore, the Pb-T was strongly correlated (r = 0.85) with the Pb levels in the blood. Laser ablation ICP-MS Pb-T mappings revealed a homogenous distribution of Pb in the incisor with an increased intensity of Pb-T localized in the tip of the incisor crown bearing an enamel surface in both Sprague Dawley and R. rattus rats. These findings suggest that Pb-T in the crown incisor may be reflective of the rat’s environmental habitat, thus a possible indicator of Pb exposure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samuel McPhee ◽  
Alexander Groetsch ◽  
Jonathan D. Shephard ◽  
Uwe Wolfram

AbstractThe underlying constraint of ultrashort pulsed laser ablation in both the clinical and micromachining setting is the uncertainty regarding the impact on the composition of material surrounding the ablated region. A heat model representing the laser-tissue interaction was implemented into a finite element suite to assess the cumulative temperature response of bone during ultrashort pulsed laser ablation. As an example, we focus on the extraction of mineralised collagen fibre micropillars. Laser induced heating can cause denaturation of the collagen, resulting in ultrastructural loss which could affect mechanical testing results. Laser parameters were taken from a used micropillar extraction protocol. The laser scanning pattern consisted of 4085 pulses, with a final radial pass being 22 $$\upmu {\text {m}}$$ μ m away from the micropillar. The micropillar temperature was elevated to 70.58 $$^{\circ }{\text {C}}$$ ∘ C , remaining 79.42 $$^{\circ }{\text {C}}$$ ∘ C lower than that of which we interpret as an onset for denaturation. We verified the results by means of Raman microscopy and Energy Dispersive X-ray Microanalysis and found the laser-material interaction had no effect on the collagen molecules or mineral nanocrystals that constitute the micropillars. We, thus, show that ultrashort pulsed laser ablation is a safe and viable tool to fabricate bone specimens for mechanical testing at the micro- and nanoscale and we provide a computational model to efficiently assess this.


Sign in / Sign up

Export Citation Format

Share Document