scholarly journals On the available evidence for the temperature dependence of soil organic carbon

2005 ◽  
Vol 2 (4) ◽  
pp. 749-755 ◽  
Author(s):  
W. Knorr ◽  
I. C. Prentice ◽  
I. J. House ◽  
E. A. Holland

Abstract. Two recent papers by Knorr et al. (2005) and Fang et al. (2005) provide variations of model fitting conducted in the former study. Knorr et al. (2005) suggested that more recalcitrant fractions of soil organic carbon (SOC) could be more sensitive to temperature. Fang et al. (2005) argue that this is an implication of the choice of model used. Further, Reichstein et al. (2005) point out that the evidence for a stronger temperature sensitivity of recalcitrant soil carbon mainly rests on an analysis of data provided by Kätterer et al. (1998) and argue for a different selection criterion to exclude short-term incubations. Here, we explain why the model used by Knorr et al. (2005) is the simplest multi-pool model that can fit the available data and is at the same time fully consistent with the concept of "pools", as opposed to some of the model formulations proposed by Fang et al. (2005). It is also pointed out that the criterion proposed by Reichstein et al. (2005) uses posterior information to determine inclusion of experimental data, a practice that should be avoided. We conclude that the original analysis of Knorr et al. (2005) as well as the one added by Fang et al. (2005) indicate that there is a serious possibility that recalcitrant SOC reacts more to temperature changes than labile SOC.

2021 ◽  
Vol 213 ◽  
pp. 105143
Author(s):  
Jorge Álvaro-Fuentes ◽  
Samuel Franco-Luesma ◽  
Victoria Lafuente ◽  
Pablo Sen ◽  
Asun Usón ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


2021 ◽  
Vol 19 (1) ◽  
pp. e1102
Author(s):  
Maroua Dachraoui ◽  
Aurora Sombrero

Aim of study: To evaluate the effects of conventional tillage (CT) and no tillage (NT) systems on the soil organic carbon (SOC) changes, CO2 emissions and their relation with soil temperature and grain yield in a monoculture of irrigated maize during six years.Area of study: In Zamadueñas experimental field in the Spanish province of Valladolid, from 2011 to 2017.Material and methods: The SOC content was determined by collecting soil samples up to 30 cm in November at two years interval. Short-term CO2 emissions were measured simultaneously with soil temperature using a respiration chamber and a hand-held probe immediately before, after every tillage operation and during the maize cycle.Main results: The SOC stock of the top 30 cm soil layers was 13% greater under NT than CT. Short-term CO2 emissions were significantly higher under CT ranging from 0.8 to 3.4 g CO2 m-2 h-1 immediately after tillage while under NT system, soil CO2 fluxes were low and stable during this study period. During the first 48 h following tillage, cumulative CO2 emissions ranged from 0.6 to 2.4 Mg CO2 ha-1 and from 0.2 to 0.3 Mg CO2 ha-1 under CT and NT systems, respectively. Soil temperature did not show significant correlation with CO2 emissions; however, it depended mostly on the time of measurement.Research highlights: No tillage increased the SOC accumulation in the topsoil layer, reduced CO2 emissions without decreasing maize grain yield and minimized the impact on climate change compared to CT system.


2012 ◽  
Vol 66 (6) ◽  
Author(s):  
Radoslaw Slezak ◽  
Liliana Krzystek ◽  
Stanisław Ledakowicz

AbstractA short-term aerobic stabilization of digested waste in the final methane phase was studied. The effect of aeration rate on the reduction of leachate parameters and on the rate of CO2 production and O2 assimilation was investigated. Experimental simulation of aerobic landfill stabilization was carried out using lysimeters. When testing the effect of aeration rate on the reduction of leachate indices (BOD5, COD, N-NH4+), it was reported that the most significant reduction was obtained at the highest rate of aeration and the smallest reduction of leachate indices was attained not at the lowest but at medium aeration rates. Both the rate of CO2 production and the O2 assimilation reached their highest values in the lysimeters aerated at a high rate of aeration. The proposed mathematical model which consists of a system of five differential equations describing CO2 production, O2 assimilation and the changes of organic carbon content in the leachate correspond well with the experimental data.


2018 ◽  
Author(s):  
Lipeng Sun ◽  
Guoliang Wang ◽  
Hang Jing ◽  
Guobin Liu

Background: Glomalin-related soil protein (GRSP) and soil organic carbon (SOC) contribute to the formation and stability of soil aggregates, but the mechanism by which global atmospheric nitrogen (N) deposition changes soil aggregate stability when it alters the distribution of GRSP and SOC in different aggregate fractions remains unknown. Methods: We used a gradient N addition (0–9 g N–2 y–1) in Pinus tabulaeformis forest for 2 years in northeast China and then examined the changes in SOC contents, total GRSP (T-GRSP), and easily extractable GRSP (EE-GRSP) contents in three soil aggregate fractions (macro-aggregate: >250 μm, micro-aggregate: 250–53 μm, and clay–silt aggregate: <53 μm) and their relationship with aggregate stability. Results: (1) The soil was dominated by macro-aggregates. Short term N addition had no significant effect on mean weight diameter (MWD) and geometric mean diameter (GMD). (2) GRSP varied among aggregate fractions, and N addition had variable effects on the distribution of GRSP in aggregate fractions. The EE-GRSP content in the macro-aggregates increased initially and then decreased with increasing N addition levels, having a peak value of 0.480 mg/g at 6 g N–2 y–1. The micro-aggregates had the lowest EE-GRSP content (0.148 mg/g) at 6 g N–2 y–1. Furthermore, the T-GRSP content significantly increased in the aggregate fractions with the N addition levels. (3) The macro-aggregate had the highest SOC content, followed by the micro-aggregate and the clay–silt aggregate had the lowest SOC content. N addition significantly increased the SOC content in all the aggregate fractions. (4) GRSP and SOC contents were not significantly correlated with MWD. Conclusion: The distributions of GRSP and SOC varied with aggregate fractions. GRSP and SOC contents increased by N addition, but this increase did not enhance aggregate stability in short term, and the improvement of stability might depend on binding agents and incubation time.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5039 ◽  
Author(s):  
Lipeng Sun ◽  
Hang Jing ◽  
Guoliang Wang ◽  
Guobin Liu

Background Glomalin-related soil protein (GRSP) and soil organic carbon (SOC) contribute to the formation and stability of soil aggregates, but the mechanism by which global atmospheric nitrogen (N) deposition changes soil aggregate stability by altering the distribution of GRSP and SOC in different aggregate fractions remains unknown. Methods We used a gradient N addition (0–9 g N m−2 y−1) in Pinus tabulaeformis forest for two years in northeast China and then examined the changes in SOC contents, total GRSP (T-GRSP), and easily extractable GRSP (EE-GRSP) contents in three soil aggregate fractions (macro-aggregate: >250 μm, micro-aggregate: 250–53 μm, and fine material: <53 μm) and their relationship with aggregate stability. Results (1) The soil was dominated by macro-aggregates. Short term N addition had no significant effect on mean weight diameter (MWD) and geometric mean diameter (GMD). (2) GRSP varied among aggregate fractions, and N addition had different effects on the distribution of GRSP in aggregate fractions. The EE-GRSP content in the macro-aggregates increased initially and then decreased with increasing N addition levels, having a peak value of 0.480 mg g−1 at 6 g N m−2 y−1. The micro-aggregates had the lowest EE-GRSP content (0.148 mg g−1) at 6 g N m−2 y−1. Furthermore, the T-GRSP content significantly increased in the aggregate fractions with the N addition levels. (3) The macro-aggregate had the highest SOC content, followed by the micro-aggregate and the fine material had the lowest SOC content. N addition significantly increased the SOC content in all the aggregate fractions. (4) GRSP and SOC contents were not significantly correlated with MWD. Conclusion Glomalin-related soil protein and SOC contents increased by N addition, but this increase did not enhance aggregate stability in short term, and the improvement of stability might depend on binding agents and incubation time.


Sign in / Sign up

Export Citation Format

Share Document