scholarly journals The effect of a reciprocal peat transplant between two contrasting Central European sites on C cycling

2009 ◽  
Vol 6 (5) ◽  
pp. 10007-10034
Author(s):  
M. Novak ◽  
L. Zemanova ◽  
F. Buzek ◽  
I. Jackova ◽  
M. Adamova ◽  
...  

Abstract. An 18-month reciprocal peat transplant experiment was conducted between two peatlands in the Czech Republic. Both sites were 100% Sphagnum-covered, with no vascular plants, and no hummocks and hollows. Atmospheric depositions of sulfur were up to 10 times higher at the northern site Velke jerabi jezero (VJJ), compared to the southern site Cervene blato (CB). Forty-cm deep peat cores, 10 cm in diameter, were used as transplants and controls in five replicates. Our objective was to evaluate whether CO2 and CH4 production potentials in Sphagnum peat bogs are governed mainly by organic matter quality, or by environmental conditions. Production rates and δ13C values of CO2 and CH4 were measured in the laboratory at time t=18 months. All measured parameters converged to those of the host site, indicating that, at least in the short-term perspective, environmental conditions were a more important control of greenhouse gas emissions than organic carbon quality. Since sulfate reducers outcompete methanogens, we hypothesized that the S-polluted site VJJ should have lower methane emissions than CB. In fact, the opposite was true, with higher methane emissions from VJJ. As a first step in an effort to link C isotope composition of emitted gases and residual peat substrate, we determined whether multiple vertical δ13C profiles in peat agree. A high degree of within-site homogeneity in δ13C was found. The δ13C value increased downcore at both CB and VJJ. However, 20 cm below surface, a reversal to lower δ13C downcore was seen at VJJ. Based on 210Pb dating, peat at 20 cm depth at VJJ was only 15 years old. Increasing δ13C values in VJJ peat accumulated between 1880–1990 could not be caused by assimilation of atmospheric CO2 gradually enriched in the light isotope 12C due to fossil fuel burning.

2010 ◽  
Vol 7 (3) ◽  
pp. 921-932 ◽  
Author(s):  
M. Novak ◽  
L. Zemanova ◽  
F. Buzek ◽  
I. Jackova ◽  
M. Adamova ◽  
...  

Abstract. An 18-month reciprocal peat transplant experiment was conducted between two peatlands in the Czech Republic. Both sites were 100% Sphagnum-covered, with no vascular plants, and no hummocks and hollows. Atmospheric depositions of sulfur were up to 10 times higher at the northern site Velke jerabi jezero (VJJ), compared to the southern site Cervene blato (CB). Forty-cm deep peat cores, 10-cm in diameter, were used as transplants and controls in five replicates. Our objective was to evaluate whether CO2 and CH4 emissions from Sphagnum peat bogs are governed mainly by organic matter quality in the substrate, or by environmental conditions. Emission rates and δ13C values of CO2 and CH4 were measured in the laboratory at time t=18 months. All measured parameters converged to those of the host site, indicating that, at least in the short-term perspective, environmental conditions were a more important control of greenhouse gas emissions than organic carbon quality in the substrate. Since sulfate reducers outcompete methanogens, we hypothesized that the S-polluted site VJJ should have lower methane emissions than CB. In fact, the opposite was true, with significantly (p<0.01) higher methane emissions from VJJ. Additionally, as a first step in an effort to link C isotope composition of emitted gases and residual peat substrate, we determined whether multiple vertical δ13C profiles in peat agree. A high degree of within-site homogeneity in δ13C was found. When a specific vertical δ13C trend was seen in one peat core, the same trend was also seen in all the remaining peat cores from the wetland. The δ13C value increased downcore at both CB and VJJ. At VJJ, however, 20 cm below surface, a reversal to lower δ13C downcore was seen. Based on 210Pb dating, peat at 20-cm depth at VJJ was only 15 years old. Increasing δ13C values in VJJ peat accumulated between 1880–1990 could not be caused by assimilation of atmospheric CO2 gradually enriched in the light isotope 12C due to fossil fuel burning. Rather they were a result of a combination of isotope fractionations accompanying assimilation and mineralization of Sphagnum C. These isotope fractionations may record information about past changes in C storage in wetlands.


2018 ◽  
Vol 15 (16) ◽  
pp. 5189-5202 ◽  
Author(s):  
Gustaf Granath ◽  
Håkan Rydin ◽  
Jennifer L. Baltzer ◽  
Fia Bengtsson ◽  
Nicholas Boncek ◽  
...  

Abstract. Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on nutrients, water and CO2 uptake from the atmosphere. As the isotopic composition of carbon (12,13C) and oxygen (16,18O) of these Sphagnum mosses are affected by environmental conditions, Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is inadequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is species-specific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation) and elevation; (ii) whether the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue δ18O tracks the δ18O isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia using two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holarctic realm. There were differences in δ13C values between species. For S. magellanicum δ13C decreased with increasing height above the water table (HWT, R2=17 %) and was positively correlated to productivity (R2=7 %). Together these two variables explained 46 % of the between-site variation in δ13C values. For S. fuscum, productivity was the only significant predictor of δ13C but had low explanatory power (total R2=6 %). For δ18O values, approximately 90 % of the variation was found between sites. Globally modelled annual δ18O values in precipitation explained 69 % of the between-site variation in tissue δ18O. S. magellanicum showed lower δ18O enrichment than S. fuscum (−0.83 ‰ lower). Elevation and climatic variables were weak predictors of tissue δ18O values after controlling for δ18O values of the precipitation. To summarize, our study provides evidence for (a) good predictability of tissue δ18O values from modelled annual δ18O values in precipitation, and (b) the possibility of relating tissue δ13C values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.


2018 ◽  
Author(s):  
Gustaf Granath ◽  
Håkan Rydin ◽  
Jennifer L. Baltzer ◽  
Fia Bengtsson ◽  
Nicholas Boncek ◽  
...  

Abstract. Rain-fed peatlands are dominated by peat mosses (Sphagnum sp.), which for their growth depend on elements from the atmosphere. As the isotopic composition of carbon (12,13C) and oxygen (16,18O) of these Sphagnum mosses are affected by environmental conditions, the dead Sphagnum tissue accumulated in peat constitutes a potential long-term archive that can be used for climate reconstruction. However, there is a lack of adequate understanding of how isotope values are influenced by environmental conditions, which restricts their current use as environmental and palaeoenvironmental indicators. Here we tested (i) to what extent C and O isotopic variation in living tissue of Sphagnum is species-specific and associated with local hydrological gradients, climatic gradients (evapotranspiration, temperature, precipitation), and elevation; (ii) if the C isotopic signature can be a proxy for net primary productivity (NPP) of Sphagnum; and (iii) to what extent Sphagnum tissue δ18O tracks the δ18O isotope signature of precipitation. In total, we analysed 337 samples from 93 sites across North America and Eurasia using two important peat-forming Sphagnum species (S. magellanicum, S. fuscum) common to the Holartic realm. There were differences in δ13C values between species. For S. magellanicum δ13C decreased with increasing height above the water table (HWT, R2 = 17 %) and was positively correlated to productivity (R2 = 7 %). Together these two variables explained 46 % of the between-site variation in δ13C values. For S. fuscum, productivity was the only significant predictor of δ13C (total R2 = 6 %). For δ18O values, ca. 90 % of the variation was found between sites. Globally-modelled annual δ18O values in precipitation explained 69% of the between-site variation in tissue δ18O. S. magellanicum showed lower δ18O enrichment than S. fuscum (−0.83 ‰ lower) . Elevation and climatic variables were weak predictors of tissue δ18O values after controlling for δ18O values of the precipitation. To summarise, our study provides evidence for (a) good predictability of tissue δ18O values from modelled annual δ18O values in precipitation, and (b) the possibility to relate tissue δ13C values to HWT and NPP, but this appears to be species-dependent. These results suggest that isotope composition can be used at a large scale for climatic reconstructions but that such models should be species-specific.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 166-167
Author(s):  
Andrea M Osorio ◽  
Kaue T Tonelli Nardi ◽  
Igor Gomes Fávero ◽  
Kaliu G Scaranto Silva ◽  
Kymberly D Coello ◽  
...  

Abstract The effects of a nutritional packet were evaluated on CH4 emissions and apparent total tract nutrient digestibility of feedlot beef steers. Thirty Angus-crossbred steers (BW = 542 ± 8.4 kg) were used in a randomized complete block design and allocated into pens equipped with SmartFeed (C-Lock; 15 steers/treatment). Steers were consuming a steam-flaked corn-based diet (88% concentrate DM basis) ad libitum for the last 65 d on feed, and received the following treatments: 1) control and 2) a nutritional packet [0.29% DM basis; live yeast (Saccharomyces cerevisiae; 8.7 Log CFU/g); Vitamin C (5.4 g/kg); Vitamin B1 (13.33 g/kg); NaCl (80 g/kg); KCl (80 g/kg)]. Methane emissions and apparent total tract nutrient digestibility were measured during 3 periods with 5-d of collections each. Gas emissions from steers were measured utilizing the SF6 tracer technique. Feed and fecal samples were collected once and twice (0700 h and 1600 h) daily, respectively, to determine digestibility of nutrients using iNDF as an internal marker. Steer was considered the experimental unit. Data were analyzed as repeated measures using the MIXED procedure of SAS with the fixed effects of treatment, period, and their interaction, and the random effect of block. No treatment × period interactions (P ≥ 0.125) were observed for DMI and any of the CH4 production variables (g/day, g/kg BW0.75, g/nutrient intake, and g/nutrient digested). Moreover, treatments did not affect digestibility of DM, OM, or ADF (P ≥ 0.300); however, digestibility of NDF was increased for treated cattle (P = 0.013), which resulted in a tendency (P = 0.098) to decrease CH4 production in g per kg NDF intake and decreased (P = 0.020) grams CH4 per kg NDF digested. The nutritional packet may be altering ruminal fermentation on intensively managed steers and improving fiber digestibility, which can have benefits on CH4 emission intensity.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 380-381
Author(s):  
Isabella Cristina F Maciel ◽  
Fabiano A Barbosa ◽  
Thierry R Tomich ◽  
Ramon C Alvarenga ◽  
Ludhiana R Ferreira ◽  
...  

Abstract Crossbreeding has been used to improve performance in beef cattle; however, the effects of breed composition on methane production, yield and intensity from cattle in a tropical intensive system remain unknown. To assess the impact of breed composition on enteric methane emissions, Nellore (NE; yr 1: BW = 171.5 ± 19.4 kg; n = 10; yr 2: BW = 215.8 ± 32.3 kg, n = 25) and Angus-Nellore crossbred (AN; yr 1: BW = 214.2 ± 26.4 kg, n = 10; yr 2: BW = 242.5 ± 32.2 kg, n = 25) were compared. At trial onset, 10 mo old steers grazed Megathyrsus maximus ‘Mombaça’ in the grazing period (GP) and then were finished in a feedlot (FL) (35:65% corn silage:concentrate diet). Steers (n = 8) from each breed composition were randomly selected in GP and FL to measure CH4 production using a sulfur hexafluoride technique and DMI using titanium dioxide. The NE produced 19% less CH4 than AN in GP (17.21 vs 21.17 kg, P &lt; 0.01), and no difference was observed in FL (22.34 vs 22.67 kg, P &gt; 0.10). However, in FL, NE had greater CH4 intensity (CH4/ADG) compared to AN (122.76 vs 97.49 g/kg, P &lt; 0.01). Furthermore, CH4/carcass weight was greater for NE than AN (0.079 vs 0.067 g/kg CW, P &lt; 0.01). Breed composition did not influence CH4 yield (CH4/DMI) in either phase. The percentage CH4/GEI (Ym) for GP was higher for AN than NE (4.5 vs 3.8%), but lower than the IPCC recommended Ym of 6.5%. In FL, Ym was similar between breed composition (5.0%) and greater than the IPCC Ym of 3%. In our study the introduction of Angus into Nellore has potential to reduce CH4 intensity in tropical climates, resulting in less methane emission per kg beef produced.


1983 ◽  
Vol 10 (5) ◽  
pp. 437 ◽  
Author(s):  
TF Neales ◽  
MS Fraser ◽  
Z Roksandic

The δ13C values of the leaves of Disphyma clavellatum (Aizoaceae) systematically became less negative as the salinity in the root environment increased from 0 to 500 mol m-3 NaCl. The maximum shift of δ13C was from -26.1‰ to -20.0‰. Similar increases in salinity did not, however, result either in a change in the diurnal pattern of net CO2 assimilation or in an appreciable increase in the fluctuations of titratable acidity. It is suggested that salinity induced the observed shift in δ13C values, not by effecting change in the mode of carboxylation towards that of crassulacean acid metabolism (CAM), but by affecting the degree of limitation of CO2 assimilation by diffusion processes. It is concluded therefore that, in D. clavellatum, CAM is not induced by salinity, as it is in Mesembryanthemum crystallinum.


2012 ◽  
Vol 77 (2) ◽  
pp. 245-250 ◽  
Author(s):  
Ryszard K. Borówka ◽  
Wacław Strobel ◽  
Stanisław Hałas

The environmental conditions of the Szczecin Bay, which existed prior to Szczecin Lagoon, have been reconstructed on the basis of the stable carbon and oxygen isotope (18O and 13C) analysis and radiocarbon dates obtained for subfossil shells of Cerastoderma (Cardium) glaucum. The shells in the collected core were well preserved in their life positions, representing a geochemical record of past temperature variation over the middle Holocene. Three major periods with different thermal conditions have been distinguished in the interval ~ 6000–4300 cal yr BP, when the important Littorina regional transgression took place. During the first period, 6000–5250 cal yr BP, water temperature decreased by 1.4°C, and then remained constant over the second period (5250–4750 cal yr BP). In contrast, during the third period (4750–4300 cal yr BP) both δ-values were highly variable and the mean summer temperature (March–November) increased by about 3.5°C. During first two periods, δ18O and δ13C were significantly correlated, indicating stability of the environmental conditions.


2013 ◽  
Vol 184 (6) ◽  
pp. 583-599 ◽  
Author(s):  
Isabelle Cojan ◽  
Anne Bialkowski ◽  
Thomas Gillot ◽  
Maurice Renard

Abstract Stable isotope (C and O) analyses were carried out on pedogenic nodules from carbonate-rich paleosols from early to middle Miocene strata in the Digne-Valensole foreland basin (southeast France). Paleosols from three sections corresponding to several paleoenvironments were sampled in order to investigate the local influence on the isotope record of the depositional sites: a deltaic floodplain (Châteauredon section, BCR), an inland floodplain (Saule Mort section, SM) and a shallow lacustrine system (Pont d’Aiguines section, PA). According to their biostratigraphy, they correspond to the same stratigraphic interval. Paleosols are regularly distributed along the three sections. They have developed either on floodplain alluvium or on palustrine carbonate mud. They are characterized by fersiallitic red soils with a calcic horizon, typical of a xeric soil moisture conditions with a marked seasonality. Carbonate nodules sampled at depths of 0.3 to 1 m below the preserved top soil are considered suitable for paleoecological interpretation. The cross-plot of the δ18O and δ13C values shows well-distributed data indicating that the pedogenic nodules were not affected by any major recrystallizations during burial. Their distribution indicates climate conditions similar to those of modern Mediterranean soils, characterized by carbonates precipitating from enriched meteoric water. A refined stratigraphic attribution of all the sections is based on the carbon isotope chemostratigraphy developed on the Châteauredon section by correlation with marine carbon isotope data [Bialkowski et al., 2006]. All sections extend from very early Aquitanian to middle Serravallian. No major hiatus was identified except for the one associated with a highly karstified surface in the Pont d’Aiguines section. The hiatus duration, estimated to 1 Ma, is interpreted as the record of some deformation at the front of the Digne thrust sheet during the Langhian. Most carbon isotope values are heavier than −8‰, suggesting a water-stressed C3 vegetation growing in a semi-arid environment. These semi-arid conditions are found in all sections during early Aquitanian and late Burdigalian to early Serravallian (Middle Miocene climatic optimum, MMCO), indicating similar environmental conditions between the coastal sites (BCR and PA sections) and the inland SM section. From middle Aquitanian to late Burdigalian, data from the coastal sites indicate typical C3 vegetation whereas xeric conditions characterized the inland site, suggesting distinct local ecosystems. The interpretation of the oxygen isotope record is more complex due to the different interactions during carbonate precipitation. In the early Aquitanian, the concomitant decrease in the pedogenic δ13C and δ18O isotope values is interpreted as a decrease of the water-stressed environmental conditions due either to a change in precipitation patterns resulting in low evaporation or to a fall in temperature. For the Langhian, the high δ13C values indicate xeric conditions throughout the area, and the high δ18O values at the coastal site suggest an increase in the combined effect of temperature and evaporation. Evidence of deformation related to the foreland basin evolution during this period is supported by the great differences in the oxygen isotope record of the different sections. The observed changes in the environmental conditions of the Digne-Valensole basin agree with the climate fluctuations identified on the basis of paleobotanical assemblages and mammal teeth isotope records from western European continental basins and of marine data. Our results show that a study of paleosols and the isotope composition of the pedogenic carbonate of the early to middle Miocene in the Digne-Valensole basin provide valuable information concerning the regional paleotopographic evolution of the foreland basin, as well as the distinct paleoecological systems that developed between the inland and the coastal sites and the regional paleoclimatic trends that correspond to those identified in other European continental basins. These reconstructions based on paleosols, the dry-end member of the climatic record, are complementary to those based on the paleofloras, mostly obtained from the wet-end member.


Polar Record ◽  
2016 ◽  
Vol 52 (4) ◽  
pp. 450-463 ◽  
Author(s):  
Vlasta Jankovská ◽  
Milena Roszkowska ◽  
Łukasz Kaczmarek

ABSTRACTPollen- and non-pollen-palynomorphs (NPP) analytical studies of the northwestern part of Spitsbergen were conducted between 1988 and 1991. As well as pollen from local native flora and more dispersed species, some well preserved remains of tardigrada exuvia, buccal tubes and eggs were found. This study reviewed the remains of at least six tardigrade taxa reported:Dactylobiotus ambiguous, Paramacrobiotus richtersigroup,Richtersius coronifer, Macrobiotus hufelandigroup,Macrobiotus peterseniandMinibiotuscf.intermedius, which are reassessed and determined more accurately. These findings provide some new insights into the past environmental conditions and changes for Spitsbergen. Based on the present research it can be concluded that tardigrade remains are frequent NPP elements of pollen analyses from lake, peat bogs and detritus sub-fossil sediment cores, at least in polar regions. It can also be stated that tardigrades can be considered indicators in further palaeontological studies helping to reconstruct past environmental conditions (for example humidity) for some regions. However, the knowledge of tardigrades in these types of analyses is still rather poor.


Sign in / Sign up

Export Citation Format

Share Document