scholarly journals Optimization of the seasonal cycles of simulated CO<sub>2</sub> flux by fitting simulated atmospheric CO<sub>2</sub> to observed vertical profiles

2009 ◽  
Vol 6 (3) ◽  
pp. 5933-5957 ◽  
Author(s):  
Y. Nakatsuka ◽  
S. Maksyutov

Abstract. An inverse of a combination of atmospheric transport and flux models was used to optimize model parameters of the Carnegie-Ames-Stanford Approach (CASA) terrestrial ecosystem model. The method employed in the present study is based on minimizing an appropriate cost function (i.e. the weighted differences between the simulated and observed seasonal cycles of CO2 concentrations). We tried to reduce impacts that the inaccuracy of a vertical mixing in a transport model has on the simulated amplitudes of seasonal cycles of carbon flux by using airborne observations of CO2 vertical profile aggregated to a partial column. Effect of the vertical mixing on optimized NEP was evaluated by carrying out 2 sets of inverse calculations: one with partial-column concentration data from 15 locations and another with near-surface CO2 concentration data from the same 15 locations. We found that the values of simulated growing season net flux (GSNF) and net primary productivity (NPP) are affected by the rate of vertical mixing in a transport model used in the optimization. Optimized GSNF and NPP are higher when optimized with partial column data as compared to the case with near-surface data only due to the weak vertical mixing in the transport model used in this study.

2009 ◽  
Vol 6 (12) ◽  
pp. 2733-2741 ◽  
Author(s):  
Y. Nakatsuka ◽  
S. Maksyutov

Abstract. An inverse of a combination of atmospheric transport and flux models was used to optimize the Carnegie-Ames-Stanford Approach (CASA) terrestrial ecosystem model properties such as light use efficiency and temperature dependence of the heterotrophic respiration separately for each vegetation type. The method employed in the present study is based on minimizing the differences between the simulated and observed seasonal cycles of CO2 concentrations. In order to compensate for possible vertical mixing biases in a transport model we use airborne observations of CO2 vertical profile aggregated to a partial column instead of surface observations used predominantly in other parameter optimization studies. Effect of the vertical mixing on optimized net ecosystem production (NEP) was evaluated by carrying out 2 sets of inverse calculations: one with partial-column concentration data from 15 locations and another with near-surface CO2 concentration data from the same locations. We confirmed that the simulated growing season net flux (GSNF) and net primary productivity (NPP) are about 14% higher for northern extra-tropical land when optimized with partial column data as compared to the case with near-surface data.


2014 ◽  
Vol 11 (3) ◽  
pp. 635-649 ◽  
Author(s):  
Y. Peng ◽  
V. K. Arora ◽  
W. A. Kurz ◽  
R. A. Hember ◽  
B. J. Hawkins ◽  
...  

Abstract. The impacts of climate change and increasing atmospheric CO2 concentration on the terrestrial uptake of carbon dioxide since 1860 in the Canadian province of British Columbia are estimated using the process-based Canadian Terrestrial Ecosystem Model (CTEM). Model simulations show that these two factors yield an enhanced carbon uptake of around 44 gC m−2 yr−1 (or equivalently 63 gC m−2 yr−1 over the province's forested area), during the 1980s and 1990s, and continuing into the 2000s. About three-quarters of the simulated sink enhancement in our study compared to pre-industrial conditions is attributed to changing climate, and the rest is attributed to increase in CO2 concentration. The model response to changing climate and increasing CO2 is corroborated by comparing simulated stem wood growth rates with ground-based measurements from inventory plots in coastal British Columbia. The simulated sink is not an estimate of the net carbon balance because the effects of harvesting, insect disturbances and land-use change are not considered.


2016 ◽  
Vol 16 (4) ◽  
pp. 1907-1918 ◽  
Author(s):  
Xia Zhang ◽  
Kevin R. Gurney ◽  
Peter Rayner ◽  
David Baker ◽  
Yu-ping Liu

Abstract. Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal, weekly and monthly) using a global tracer transport model. Results show an annual FFCO2 rectification varying from −1.35 to +0.13 ppm from the combination of all three cycles. This rectification is driven by a large negative diurnal FFCO2 rectification due to the covariation of diurnal FFCO2 emissions and diurnal vertical mixing, as well as a smaller positive seasonal FFCO2 rectification driven by the covariation of monthly FFCO2 emissions and monthly atmospheric transport. The diurnal FFCO2 emissions are responsible for a diurnal FFCO2 concentration amplitude of up to 9.12 ppm at the grid cell scale. Similarly, the monthly FFCO2 emissions are responsible for a simulated seasonal CO2 amplitude of up to 6.11 ppm at the grid cell scale. The impact of the diurnal FFCO2 emissions, when only sampled in the local afternoon, is also important, causing an increase of +1.13 ppmv at the grid cell scale. The simulated CO2 concentration impacts from the diurnally and seasonally varying FFCO2 emissions are centered over large source regions in the Northern Hemisphere, extending to downwind regions. This study demonstrates the influence of sub-annual variations in FFCO2 emissions on simulated CO2 concentration and suggests that inversion studies must take account of these variations in the affected regions.


2011 ◽  
Vol 11 (2) ◽  
pp. 5379-5405 ◽  
Author(s):  
P. K. Patra ◽  
Y. Niwa ◽  
T. J. Schuck ◽  
C. A. M. Brenninkmeijer ◽  
T. Machida ◽  
...  

Abstract. Quantifying the fluxes of carbon dioxide (CO2) between the atmosphere and terrestrial ecosystems in all their diversity, across the continents, is important and urgent for implementing effective mitigating policies. Whereas much is known for Europe and North America for instance, in comparison, South Asia, with 1.6 billion inhabitants and considerable CO2 fluxes, remained terra incognita in this respect. We use regional measurements of atmospheric CO2 aboard a Lufthansa passenger aircraft between Frankfurt (Germany) and Chennai (India) at cruise altitude, in addition to the existing network sites for 2008, to estimate monthly fluxes for 64-regions using Bayesian inversion and transport model simulations. The applicability of the model's transport parameterization is confirmed using SF6, CH4 and N2O simulations for the CARIBIC datasets. The annual carbon flux obtained by including the aircraft data is twice as large as the fluxes simulated by a terrestrial ecosystem model that was applied to prescribe the fluxes used in the inversions. It is shown that South Asia sequestered carbon at a rate of 0.37±0.20 Pg C yr−1 (1Pg C = 1015 g of carbon in CO2) for the years 2007 and 2008. The seasonality and the strength of the calculated monthly fluxes are successfully validated using independent measurements of vertical CO2 profiles over Delhi and spatial variations at cruising altitude over Asia aboard Japan Airlines passenger aircraft.


2014 ◽  
Vol 14 (6) ◽  
pp. 7683-7709
Author(s):  
F. Jiang ◽  
H. M. Wang ◽  
J. M. Chen ◽  
T. Machida ◽  
L. X. Zhou ◽  
...  

Abstract. Terrestrial CO2 flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002–2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the BEPS model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced. CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements have improved the inversion results.


2019 ◽  
Vol 11 (15) ◽  
pp. 4176 ◽  
Author(s):  
Qing Huang ◽  
Weimin Ju ◽  
Fangyi Zhang ◽  
Qian Zhang

Net primary productivity (NPP) is the key component of the terrestrial carbon cycle, and terrestrial NPP trends under increasing CO2 and climate change in the past and future are of great significance in the study of the global carbon budget. Here, the LPJ-DGVM was employed to simulate the magnitude and pattern of China’s terrestrial NPP using long-term series data to understand the response of terrestrial NPP to increasing CO2 concentration and climate change. The results showed that total NPP of China’s terrestrial ecosystem increased from 2.8 to 3.6 Pg C yr−1 over the period of 1961–2016, with an annual average of 3.1 Pg C yr−1. The average NPP showed a gradient decrease from the southeast to northwest. Southwest China and Northwest China, comprising mostly arid and semi-arid regions, exhibited the largest increase rate in total NPP among the six geographical regions of China. Additionally, large interannual variability around the NPP trends was presented, and NPP anomalies in China’s terrestrial ecosystem are strongly associated with the El Niño-Southern Oscillation (ENSO). Southwest China made the largest contribution to the interannual variability of national total NPP. The total NPP of China’s terrestrial ecosystem continuously increased with the concurrent increase in the CO2 concentration and climate change under different scenarios in the future. During the period from 2091 to 2100, the average total NPP under the A2 and RCP85 scenarios would reach 4.9 and 5.1 Pg C yr−1 respectively, higher than 4.2 and 3.9 Pg C yr−1 under the B1 and RCP45 scenarios. Forests, especially temperate forests, make the largest contribution to the future increase in NPP. The increase in CO2 concentration would play a dominant role in driving further NPP increase in China’s terrestrial ecosystems, and climate change may slightly attenuate the fertilization effect of CO2 on NPP.


2015 ◽  
Vol 19 (16) ◽  
pp. 1-21 ◽  
Author(s):  
Chang Liao ◽  
Qianlai Zhuang

Abstract Droughts dramatically affect plant production of global terrestrial ecosystems. To date, quantification of this impact remains a challenge because of the complex plant physiological and biochemical processes associated with drought. Here, this study incorporates a drought index into an existing process-based terrestrial ecosystem model to estimate the drought impact on global plant production for the period 2001–10. Global Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary production (GPP) data products are used to constrain model parameters and verify the model algorithms. The verified model is then applied to evaluate the drought impact. The study indicates that droughts will reduce GPP by 9.8 g C m−2 month−1 during the study period. On average, drought reduces GPP by 10% globally. As a result, the global GPP decreased from 106.4 to 95.9 Pg C yr−1 while the global net primary production (NPP) decreased from 54.9 to 49.9 Pg C yr−1. This study revises the estimation of the global NPP and suggests that the future quantification of the global carbon budget of terrestrial ecosystems should take the drought impact into account.


2013 ◽  
Vol 13 (3) ◽  
pp. 5769-5804
Author(s):  
G. Broquet ◽  
F. Chevallier ◽  
F.-M. Bréon ◽  
M. Alemanno ◽  
F. Apadula ◽  
...  

Abstract. The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5° resolution are applied for the western European domain where ~ 50 eddy covariance sites are operated. These inversions are conducted for a 6-yr period (2002–2007). They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. The misfits averaged over monthly periods and over the whole domain, are in good agreement with the theoretical uncertainties for prior (respectively inverted) NEE, with positive chi-square tests for the variance at the 2% (respectively 20%) significance levels, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion actually decreases the standard deviation of the misfits by as much as 38%. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modeling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that there is a low confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than represented by the ecosystem model.


2014 ◽  
Vol 14 (18) ◽  
pp. 10133-10144 ◽  
Author(s):  
F. Jiang ◽  
H. M. Wang ◽  
J. M. Chen ◽  
T. Machida ◽  
L. X. Zhou ◽  
...  

Abstract. Terrestrial carbon dioxide (CO2) flux estimates in China using atmospheric inversion method are beset with considerable uncertainties because very few atmospheric CO2 concentration measurements are available. In order to improve these estimates, nested atmospheric CO2 inversion during 2002–2008 is performed in this study using passenger aircraft-based CO2 measurements over Eurasia from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project. The inversion system includes 43 regions with a focus on China, and is based on the Bayesian synthesis approach and the TM5 transport model. The terrestrial ecosystem carbon flux modeled by the Boreal Ecosystems Productivity Simulator (BEPS) model and the ocean exchange simulated by the OPA-PISCES-T model are considered as the prior fluxes. The impacts of CONTRAIL CO2 data on inverted China terrestrial carbon fluxes are quantified, the improvement of the inverted fluxes after adding CONTRAIL CO2 data are rationed against climate factors and evaluated by comparing the simulated atmospheric CO2 concentrations with three independent surface CO2 measurements in China. Results show that with the addition of CONTRAIL CO2 data, the inverted carbon sink in China increases while those in South and Southeast Asia decrease. Meanwhile, the posterior uncertainties over these regions are all reduced (2–12%). CONTRAIL CO2 data also have a large effect on the inter-annual variation of carbon sinks in China, leading to a better correlation between the carbon sink and the annual mean climate factors. Evaluations against the CO2 measurements at three sites in China also show that the CONTRAIL CO2 measurements may have improved the inversion results.


Sign in / Sign up

Export Citation Format

Share Document