Surface adhesion of phototrophic biofilms

2020 ◽  
Author(s):  
Judith Stiefelmaier ◽  
Dorina Strieth ◽  
Susanne Schaefer ◽  
Daniel Kronenberger ◽  
Björn Wrabl ◽  
...  

<p>Cyanobacteria belong to the oldest known microorganisms and are capable of oxygenic photosynthesis. Depending on their habitat aquatic and terrestrial cyanobacteria are distinguished. Terrestrial cyanobacteria grow embedded in a matrix of extracellular polymeric substances (EPS) as phototrophic biofilms. Those EPS serve as nutrient storage, protection from desiccation and play an important role in surface adhesion. For cultivation of phototrophic biofilms different biofilm reactors have been developed in the last years. One interesting parameter when cultivating biofilms is the surface material and structure, since it can influence the surface adhesion and thus biofilm formation. Therefore, different materials as cultivation surfaces were investigated as well as the strain specific behavior of different cyanobacteria and the impact on EPS formation. In this work the adhesion of the terrestrial cyanobacteria <em>Coleofasciculus chthonoplastes</em> and <em>Trichocoleus sociatus</em> to different materials was investigated. For characterization of materials measurements concerning surface roughness were conducted using atomic force microscopy. Biofilms were cultivated in an aerosol and the development of surface adhesion in connection with biofilm age was analyzed using two different methods. In the first set-up biofilms were placed in a specially designed flow-through chamber and overflown with medium at increasing flow speed. The detachment of the biofilm was documented with optical coherence tomography (OCT). Additionally, the experiments were supplemented with CFD-simulation for quantification of shear forces. The second method analyzed adhesion forces using rotational rheometry. Hereby, differences between cyanobacteria strains and surface materials could be observed as well as an increasing adhesion with increasing cultivation time. The developed flow-through chamber, which could as well be utilized with a camera instead of OCT, offers a simple low-priced possibility for investigation of surface adhesion.</p> <p>This project is financially supported by the German Research Foundation (DFG; Project number: UL 170/16-1; MU 2985/3-1 and SFB 926) and the Landesförderung Rheinland-Pfalz (Project: iProcess).</p>

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andoni Garitano-Trojaola ◽  
Ana Sancho ◽  
Ralph Götz ◽  
Patrick Eiring ◽  
Susanne Walz ◽  
...  

AbstractThe presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD + AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD + AML.


Materials ◽  
2003 ◽  
Author(s):  
Sayavur I. Bakhtiyarov ◽  
Ruel A. Overfelt

Numerical simulation of decomposed gases through foam pattern was conducted using finite element analysis. A new kinetic model is proposed for gaseos phase flow between molten metal and foam material. The computations were performed for a wide range of Reynolds numbers. The results of the simulations are compared with the experiemental data obtained in this study.


2013 ◽  
Vol 41 (1) ◽  
pp. 393-398 ◽  
Author(s):  
Sabrina Fröls

Biofilms or multicellular structures become accepted as the dominant microbial lifestyle in Nature, but in the past they were only studied extensively in bacteria. Investigations on archaeal monospecies cultures have shown that many archaeal species are able to adhere on biotic and abiotic surfaces and form complex biofilm structures. Biofilm-forming archaea were identified in a broad range of extreme and moderate environments. Natural biofilms observed are mostly mixed communities composed of archaeal and bacterial species of various abundances. The physiological functions of the archaea identified in such mixed communities suggest a significant impact on the biochemical cycles maintaining the flow and recycling of the nutrients on earth. Therefore it is of high interest to investigate the characteristics and mechanisms underlying the archaeal biofilm formation. In the present review, I summarize and discuss the present investigations of biofilm-forming archaeal species, i.e. their diverse biofilm architectures in monospecies or mixed communities, the identified EPSs (extracellular polymeric substances), archaeal structures mediating surface adhesion or cell–cell connections, and the response to physical and chemical stressors implying that archaeal biofilm formation is an adaptive reaction to changing environmental conditions. A first insight into the molecular differentiation of cells within archaeal biofilms is given.


Author(s):  
Mandana S. Saravani ◽  
Saman Beyhaghi ◽  
Ryoichi S. Amano

The present work investigates the effects of buoyancy and density ratio on the thermal performance of a rotating two-pass square channel. The U-bend configuration with smooth walls is selected for this study. The channel has a square cross-section with a hydraulic diameter of 5.08 cm (2 inches). The lengths of the first and second passes are 514 mm and 460 mm, respectively. The turbulent flow enters the channel with Reynolds numbers of up to 34,000. The rotational speed varies from 0 to 600 rpm with the rotational numbers up to 0.75. For this study, two approaches are considered for tracking the buoyancy effect on heat transfer. In the first case, the density ratio is set constant, and the rotational speed is varied. In the second case, the density ratio is changed in the stationary case, and the effect of density ratio is discussed. The range of Buoyancy number along the channel is 0–6. The objective is to investigate the impact of Buoyancy forces on a broader range of rotation number (0–0.75) and Buoyancy number scales (0–6), and their combined effects on heat transfer coefficient for a channel with aspect ratio of 1:1. Several computational fluid dynamics (CFD) simulation are carried out for this study, and some of the results are validated against experimental data.


Sign in / Sign up

Export Citation Format

Share Document