scholarly journals On the spatial and temporal variability of ENSO precipitation and drought teleconnection in mainland Southeast Asia

2016 ◽  
Vol 12 (9) ◽  
pp. 1889-1905 ◽  
Author(s):  
Timo A. Räsänen ◽  
Ville Lindgren ◽  
Joseph H. A. Guillaume ◽  
Brendan M. Buckley ◽  
Matti Kummu

Abstract. The variability of the hydroclimate over mainland Southeast Asia is strongly influenced by the El Niño–Southern Oscillation (ENSO), which has been linked to severe droughts and floods that profoundly influence human societies and ecosystems alike. Although the significance of ENSO is well understood, there are still limitations in the understanding of its effects on hydroclimate, particularly with regard to understanding the spatio-temporal characteristics and the long-term variation of its effects. Therefore we analysed the seasonal evolution and spatial variations in the effect of ENSO on precipitation over the period of 1980–2013 and the long-term variation in the ENSO teleconnection using tree-ring-derived Palmer drought severity indices (PDSIs) for the March–May season that span over the time period 1650–2004. The analyses provided an improved understanding of the seasonal evolution of the precipitation anomalies during ENSO events. The effects of ENSO were found to be most consistent and expressed over the largest areal extents during March–May of the year when the ENSO events decay. On a longer timescale, we found that ENSO has affected the region's March–May hydroclimate over the majority (95 %) of the 355-year study period and that during half (52 %) of the time ENSO caused a significant increase in hydroclimatic variability. The majority of the extremely wet and dry March–May seasons also occurred during ENSO events. However, considerable variability in ENSO's influence was revealed: the spatial pattern of precipitation anomalies varied between individual ENSO events, and the strength of ENSO's influence was found to vary through time. Given the high variability in ENSO teleconnection that we described and the limitations of the current understanding of the effects of ENSO, we suggest that the adaptation to ENSO-related extremes in hydroclimate over mainland Southeast Asia needs to recognise uncertainty as an inherent part of adaptation, must go beyond "predict and control", and should seek adaptation opportunities widely within society.

2015 ◽  
Vol 11 (6) ◽  
pp. 5307-5343 ◽  
Author(s):  
T. A. Räsänen ◽  
V. Lindgren ◽  
J. H. A. Guillaume ◽  
B. M. Buckley ◽  
M. Kummu

Abstract. The variability in the hydroclimate over mainland Southeast Asia is strongly influenced by the El Niño–Southern Oscillation (ENSO) phenomenon, which has been linked to severe drought and floods that profoundly influence human societies and ecosystems alike. However, the spatial characteristics and long-term stationarity of ENSO's influence in the region are not well understood. We thus aim to analyse seasonal evolution and spatial variations in the effect of ENSO on precipitation over the period of 1980–2013, and long-term variation in the ENSO-teleconnection using tree-ring derived Palmer Drought Severity Indices (PDSI) that span from 1650–2004. We found that the majority of the study area is under the influence of ENSO, which has affected the region's hydroclimate over the majority (96 %) of the 355 year study period. Our results further indicate that there is a pattern of seasonal evolution of precipitation anomalies during ENSO. However, considerable variability in the ENSO's influence is revealed: the strength of ENSO's influence was found to vary in time and space, and the different ENSO events resulted in varying precipitation anomalies. Additional research is needed to investigate how this variation in ENSO teleconnection is influenced by other factors, such as the properties of the ENSO events and other ocean and atmospheric phenomena. In general, the high variability we found in ENSO teleconnection combined with limitations of current knowledge, suggests that the adaptation to extremes in hydroclimate in mainland Southeast Asia needs to go beyond "predict-and-control" and recognise both uncertainty and complexity as fundamental principles.


1994 ◽  
Vol 6 (4) ◽  
pp. 473-478 ◽  
Author(s):  
C. Guinet ◽  
P. Jouventin ◽  
J-Y. Georges

The population trend over the last decade for subantarctic fur seals (Arctocephalus tropicalis) on Amsterdam and St. Paul islands and on Possession Island (Crozet Archipelago) and Antarctic fur seals (A. gazella) on Possession Island are analysed. At Amsterdam Island, based on pup counts, the subantarctic fur seal population appears to have stabilized after a period of rapid growth. At Possession Island subantarctic fur seal and Antarctic fur seal, with respective annual growth rates of 19.2 and 17.4%, are reaching the maximum growth rate for the genus Arctocephalus. Annual pup censuses at Possession Island since 1978 indicate important variations from year to year with pup production for A. gazella significantly lower the year after an El Niño Southern Oscillation (ENSO) event, but with no such relationship for A. tropicalis. Several other long term demographic studies of seabirds and marine mammals at different breeding locations in the Southern Ocean indicate that the breeding success of several of these predators appears to be widely affected in years which appear to be related to the ENSO events. To clarify this, it is necessary to analyse in more detail the demographic data obtained for the different subantarctic and Antarctic locations where long term monitoring programmes are conducted.


2018 ◽  
Vol 31 (23) ◽  
pp. 9739-9751 ◽  
Author(s):  
Yi-Peng Guo ◽  
Zhe-Min Tan

The variation in the interannual relationship between the boreal winter Hadley circulation (HC) and El Niño–Southern Oscillation (ENSO) during 1948–2014 is investigated. The interannual variability of the HC is dominated by two principal modes: the equatorial asymmetric mode (AM) and the equatorial symmetric mode (SM). The AM of the HC during ENSO events mainly results from a combined effect of the ENSO sea surface temperature (SST) anomalies and the climatological background SST over the South Pacific convergence zone. Comparatively, the SM shows a steady and statistically significant relationship with ENSO; however, the interannual relationship between the AM and ENSO is strengthened during the mid-1970s, which leads to a HC regime change—that is, the interannual pulse of the HC intensity and its response to ENSO are stronger after the mid-1970s than before. The long-term warming trend of the tropical western Pacific since the 1950s and the increased ENSO amplitude play vital roles in the HC regime change. Although the tropical eastern Pacific also experienced a long-term warming trend, it has little influence on the HC regime change due to the climatologically cold background SST over the cold tongue region.


2016 ◽  
Vol 20 (3) ◽  
Author(s):  
Roger Blench

AbstractIt is unlikely that local or highly specific typological characteristics of language correlate with other aspects of human culture and history. However, at regional scale, the broad typology of languages does reflect bottlenecks. The paper argues that these regions of high typological similarity are due neither to chance nor long-term convergence, but reflect the initial conditions of settlement. This suggests that regions can be characterised by negative typology, i.e., the absence of globally common traits. Conversely, typological uniformity occurs in mainland Southeast Asia, a region notable for the similarities between language structures. An expansion of the remit of typology can uncover large regional patterns which can be tied to the archaeological narrative of the early expansion of modern humans.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 382-383
Author(s):  
Julio O Barcellos ◽  
Fredy Gonzales ◽  
Amir G Sessim ◽  
Julia A Lima

Abstract In southern Brazil, beef cattle production systems generally rely on grazing on natural pastures. However, their forage production, and consequently metabolizable energy (ME) production, is seasonal and influenced by climatic events. Thus, there is a scientific and commercial interest in evaluating and understanding the biological impacts of intensification using pasture irrigation and the effects of El Niño-Southern Oscillation (ENSO) phenomena on the long term on the productivity of cow-calf systems. Therefore, our objective was to develop a simulation model to evaluate the effects of intensification levels, using cultivated pastures and irrigation, on the productivity and on the efficiency metabolizable energy utilization of beef cow-calf systems in a 10-year horizon. This period allows capturing the effects of several production cycles as influenced by ENSO events. The model includes three submodels: herd structure, herd ME requirements, and forage ME production. The results of the present study demonstrate that the proposed model is able to evaluate the influence of intensification of grazing systems on metabolizable energy production, carrying capacity, productivity and biological efficiency of beef cow-calf systems over a long-term horizon. Productivity was increased in 66.2% when 20% of the grazing area was intensified and irrigated compared with the modeled non-intensified system, independently of climatic events. The main productive response was the increase in the number of dams in the herd, especially as a result of the use of irrigation. This study proposes different alternatives for increasing the productivity of beef cow-calf systems in southern Brazil.


2019 ◽  
Vol 23 (2) ◽  
pp. 883-896 ◽  
Author(s):  
Aifeng Lv ◽  
Bo Qu ◽  
Shaofeng Jia ◽  
Wenbin Zhu

Abstract. In this study, the impacts of the El Niño–Southern Oscillation (ENSO) on daily precipitation regimes in China are examined using data from 713 meteorological stations from 1960 to 2013. We discuss the annual precipitation, frequency and intensity of rainfall events, and precipitation extremes for three phases (eastern Pacific El Niño – EP, Central Pacific El Niño – CP, and La Niña – LN) of ENSO events in both ENSO developing and ENSO decaying years. A Mann–Whitney U test was applied to assess the significance of precipitation anomalies due to ENSO. Results indicated that the three phases each had a different impact on daily precipitation in China and that the impacts in ENSO developing and decaying years were significantly different. EP phases caused less precipitation in developing years but more precipitation in decaying years; LN phases caused a reverse pattern. The precipitation anomalies during CP phases were significantly different than those during EP phases, and a clear pattern was found in decaying years across China, with positive anomalies over northern China and negative anomalies over southern China. Further analysis revealed that anomalies in frequency and intensity of rainfall accounted for these anomalies in annual precipitation; in EP developing years, negative anomalies in both frequency and intensity of rainfall events resulted in less annual precipitation, while in CP decaying years, negative anomalies in either frequency or intensity typically resulted in reduced annual precipitation. ENSO events tended to trigger extreme precipitation events. In EP and CP decaying years and in LN developing years, the number of very wet day precipitation (R95 p), the maximum rainfall in 1 day (Rx1d), and the number of consecutive wet days (CWD) all increased, suggesting an increased risk of flooding. On the other hand, more dry spells (DSs) occurred in EP developing years, suggesting an increased likelihood of droughts during this phase. Possible mechanisms responsible for these rainfall anomalies are speculated to be the summer monsoon and tropical cyclone anomalies in ENSO developing and decaying years.


2017 ◽  
Vol 21 (10) ◽  
pp. 5111-5126 ◽  
Author(s):  
Alejandra Stehr ◽  
Mauricio Aguayo

Abstract. Andean watersheds present important snowfall accumulation mainly during the winter, which melts during the spring and part of the summer. The effect of snowmelt on the water balance can be critical to sustain agriculture activities, hydropower generation, urban water supplies and wildlife. In Chile, 25 % of the territory between the region of Valparaiso and Araucanía comprises areas where snow precipitation occurs. As in many other difficult-to-access regions of the world, there is a lack of hydrological data of the Chilean Andes related to discharge, snow courses, and snow depths, which complicates the analysis of important hydrological processes (e.g. water availability). Remote sensing provides a promising opportunity to enhance the assessment and monitoring of the spatial and temporal variability of snow characteristics, such as the snow cover area (SCA) and snow cover dynamic (SCD). With regards to the foregoing questions, the objective of the study is to evaluate the spatiotemporal dynamics of the SCA at five watersheds (Aconcagua, Rapel, Maule, Biobío and Toltén) located in the Chilean Andes, between latitude 32.0 and 39.5° S, and to analyse its relationship with the precipitation regime/pattern and El Niño–Southern Oscillation (ENSO) events. Those watersheds were chosen because of their importance in terms of their number of inhabitants, and economic activities depending on water resources. The SCA area was obtained from MOD10A2 for the period 2000–2016, and the SCD was analysed through a number of statistical tests to explore observed trends. In order to verify the SCA for trend analysis, a validation of the MOD10A2 product was done, consisting of the comparison of snow presence predicted by MODIS with ground observations. Results indicate that there is an overall agreement of 81 to 98 % between SCA determined from ground observations and MOD10A2, showing that the MODIS snow product can be taken as a feasible remote sensing tool for SCA estimation in southern–central Chile. Regarding SCD, no significant reduction in SCA for the period 2000–2016 was detected, with the exception of the Aconcagua and Rapel watersheds. In addition to that, an important decline in SCA in the five watersheds for the period of 2012 and 2016 was also evident, which is coincidental with the rainfall deficit for the same years. Findings were compared against ENSO episodes that occurred during 2010–2016, detecting that Niña years are coincident with maximum SCA during winter in all watersheds.


2020 ◽  
Vol 12 (6) ◽  
pp. 933
Author(s):  
Jiayi Pan ◽  
Adam T. Devlin ◽  
Hui Lin

This study investigates correlations among interannual variabilities of sea surface wind, sea surface temperature (SST), and sea surface height anomaly (SSHA) in the tropical region from latitude 15°S to 15°N. Sea surface winds were derived from the European Space Agency (ESA)’s European Remote-Sensing Satellite (ERS)-1/2 scatterometer and the National Aeronautics and Space Administration (NASA)’s QuickSCAT observations; SST data were obtained from the National Oceanic and Atmospheric Administration (NOAA)’s Advanced Very-High-Resolution Radiometer (AVHRR) missions; and the SSHA data were acquired from the NASA TOPEX/Poseidon and Jason-1 altimeter measurements. All these datasets were resampled into 1° × 1° grids between 15°S and 15°N. The annual cycles were removed from all datasets and an empirical orthogonal function (EOF) analysis was applied to extract the major modes of spatial and temporal variability. The first EOF modes of the wind, SST, and SSHA revealed the interannual variability of each data source, reflecting spatio-temporal signatures related to El Nino Southern Oscillation (ENSO) events. The correlation results suggested that, during the strong El Nino period of 1997–1998, the wind variability led the variability of SST. A wind-forced delayed action oscillator (WDAO) system was proposed and analyzed using the ENSO modes of wind and SST data, covering the period from October 1995 to June 2002. The results show that the delayed SST mechanism is the strongest forcing factor in the WDAO system, and the wind forcing is the second strongest forcing factor. The correlations among SST change rate, the wind, and delayed/un-delayed SST also confirm the WDAO analysis’ results.


2008 ◽  
Vol 73 (2) ◽  
pp. 200-226 ◽  
Author(s):  
Lisa Kealhofer ◽  
Peter Grave

Debates about the development of political complexity and cities are typically focused on material cultural correlates and situated within the wider context of the emergence of states. Conventionally, state emergence is linked to agricultural surpluses and a new phase of agricultural intensification. However, this approach remains fundamentally reliant on the preservation of an appropriate and diverse suite of material cultural correlates. For mainland Southeast Asia, archaeological correlates of early political complexity are comparatively impoverished and are dominated by evidence from disparate burial contexts and architecture. In this paper, we employ an alternative approach based on a case study from north central Thailand that uses paleoenvironmental evidence of land use. These data are then related to historical urban development in the region. We suggest that large-scale patterns of agricultural expansion relate directly to increases in political complexity. Our results demonstrate that the long-term development of large-scale agricultural landscapes in this region predates the earliest evidence of monumental cities in central Thailand. We conclude that significant progress in better understanding the emergence of complex societies, both in Southeast Asia and elsewhere, is unlikely to be possible without more systematic integration of archaeological and paleoenvironmental approaches.


Ocean Science ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. 1115-1140
Author(s):  
Nining Sari Ningsih ◽  
Sholihati Lathifa Sakina ◽  
Raden Dwi Susanto ◽  
Farrah Hanifah

Abstract. Detailed ocean currents in the southeastern tropical Indian Ocean adjacent to southern Sumatran and Javan coasts have not been fully explained because of limited observations. In this study, zonal current characteristics in the region have been studied using simulation results of a 1/8∘ global hybrid coordinate ocean model from 1950 to 2013. The simulated zonal currents across three meridional sections were then investigated using an empirical orthogonal function (EOF), where the first three modes account for 75 %–98 % of the total variance. The first temporal mode of EOF is then investigated using ensemble empirical mode decomposition (EEMD) to distinguish the signals. This study has revealed distinctive features of currents in the South Java Current (SJC) region, the Indonesian Throughflow (ITF)–South Equatorial Current (SEC) region, and the transition zone between these regions. The vertical structures of zonal currents in southern Java and offshore Sumatra are characterized by a one-layer flow. Conversely, a two-layer flow is observed in the nearshore and transition regions of Sumatra. Current variation in the SJC region has peak energies that are sequentially dominated by semiannual, intraseasonal, and annual timescales. Meanwhile, the transition zone is characterized by semiannual and intraseasonal periods with pronounced interannual variations. In contrast, interannual variability associated with El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) modulates the prominent intraseasonal variability of current in the ITF–SEC region. ENSO has the strongest influence at the outflow ITF, while the IOD's strongest influence is in southwestern Sumatra, with the ENSO (IOD) leading the current by 4 months (1 month). Moreover, the contributions (largest to smallest) of each EEMD mode at the nearshore of Java and offshore Sumatra are intraseasonal, semiannual, annual, interannual, and long-term fluctuations. The contribution of long-term variation (19.2 %) in the far offshore eastern Indian Ocean is larger than the interannual (16.3 %) and annual (14.7 %) variations. Future studies should be conducted to investigate this long-term variation.


Sign in / Sign up

Export Citation Format

Share Document