scholarly journals Examining bias in pollen-based quantitative climate reconstructions induced by human impact on vegetation in China

2017 ◽  
Vol 13 (9) ◽  
pp. 1285-1300 ◽  
Author(s):  
Wei Ding ◽  
Qinghai Xu ◽  
Pavel E. Tarasov

Abstract. Human impact is a well-known confounder in pollen-based quantitative climate reconstructions as most terrestrial ecosystems have been artificially affected to varying degrees. In this paper, we use a human-induced pollen dataset (H-set) and a corresponding natural pollen dataset (N-set) to establish pollen–climate calibration sets for temperate eastern China (TEC). The two calibration sets, taking a weighted averaging partial least squares (WA-PLS) approach, are used to reconstruct past climate variables from a fossil record, which is located at the margin of the East Asian summer monsoon in north-central China and covers the late glacial Holocene from 14.7 ka BP (thousands of years before AD 1950). Ordination results suggest that mean annual precipitation (Pann) is the main explanatory variable of both pollen composition and percentage distributions in both datasets. The Pann reconstructions, based on the two calibration sets, demonstrate consistently similar patterns and general trends, suggesting a relatively strong climate impact on the regional vegetation and pollen spectra. However, our results also indicate that the human impact may obscure climate signals derived from fossil pollen assemblages. In a test with modern climate and pollen data, the Pann influence on pollen distribution decreases in the H-set, while the human influence index (HII) rises. Moreover, the relatively strong human impact reduces woody pollen taxa abundances, particularly in the subhumid forested areas. Consequently, this shifts their model-inferred Pann optima to the arid end of the gradient compared to Pann tolerances in the natural dataset and further produces distinct deviations when the total tree pollen percentages are high (i.e. about 40 % for the Gonghai area) in the fossil sequence. In summary, the calibration set with human impact used in our experiment can produce a reliable general pattern of past climate, but the human impact on vegetation affects the pollen–climate relationship and biases the pollen-based climate reconstruction. The extent of human-induced bias may be rather small for the entire late glacial and early Holocene interval when we use a reference set called natural. Nevertheless, this potential bias should be kept in mind when conducting quantitative reconstructions, especially for the recent 2 or 3 millennia.

2017 ◽  
Author(s):  
Wei Ding ◽  
Qinghai Xu ◽  
Pavel E. Tarasov

Abstract. Human impact is a well-known confounder in pollen-based quantitative climate reconstructions as most terrestrial ecosystems have been artificially affected to varying degrees. In this paper, we use a human-induced pollen dataset (H-set) and a corresponding natural pollen dataset (N-set) to establish pollen-climate calibration sets for temperate eastern China (TEC). The two calibration sets, taking a Weighted Averaging Partial Least Squares (WA-PLS) approach, are used to reconstruct past climate variables from a fossil record, which is located at the margin of the East Asian Summer Monsoon in north-central China and covers the late glacial–Holocene from 14.7 ka BP (thousand years before AD 1950). Ordination results suggest that mean annual precipitation (Pann) is the main explanatory variable of both pollen composition and percentage distributions in both datasets. The Pann reconstructions, based on the two calibration sets, demonstrate consistently similar patterns and general trends, suggesting a relatively strong climate impact on the regional vegetation and pollen spectra. However, our results also indicate that human impact may obscure climate signals derived from fossil pollen assemblages. In a test with modern climate and pollen data, the Pann influence on pollen distribution decreases in the H-set while the human influence index (HII) rises. Moreover, the relatively strong human impact reduces woody pollen taxa abundances, particularly in the sub-humid forested areas. Consequently, this shifts their model-inferred Pann optima to the arid-end of the gradient compared to Pann tolerances in the natural dataset, and further produces distinct deviations when the total tree pollen percentages are high in the fossil sequence (i.e. about 40 % for the Gonghai area). In summary, the calibration set with human impact used in our experiment can produce a reliable general pattern of past climate, but the human impact on vegetation affects the pollen-climate relationship and biases the pollen-based climate reconstruction.


2021 ◽  
Author(s):  
Mary Robles ◽  
Odile Peyron ◽  
Elisabetta Brugiapaglia ◽  
Guillemette Ménot ◽  
Lucas Dugerdil ◽  
...  

<p>In the Caucasus Mountains, the role of human influences and climate changes on steppes expansion over the Holocene is still discussed because this region is poorly documented. This study investigates (1) modern pollen-vegetation relationships in Armenia and (2) changes in vegetation, human activity and climate in the Holocene record of Vanevan peat (south-eastern shore of Lake Sevan) located in Armenia. The last 9700 years are recorded in the Vanevan core. We used a multiproxy approach including XRF, Pollen, Non-Pollen Palynomorphs (NPPs) and branched glycerol dialkyl glycerol tetraethers (brGDGTs) to reconstruct changes in vegetation, human impact and climate. The combination of these proxies is innovative and aims to distinguish the impact of human activities and climate change on vegetation. Modern pollen assemblages from semi-desert/steppe regions of Armenia show an abundance of Chenopodiaceae while meadows steppes, subalpine and alpine meadows are dominated by Poaceae. The Holocene vegetation at Vanevan is characterized by steppes dominated by Poaceae, <em>Artemisia</em> and Chenopodiaceae. However, several arboreal taxa, such as <em>Quercus, Betula, Carpinus betulus</em> and <em>Ulmus</em>, are more developed on slopes between 8600 and 5100 cal BP. Regarding the human impact, the presence of agriculture is attested since 5200 cal BP, largely increases during the last 2000 years cal BP (high percentages of <em>Cerealia</em>-type pollen) and correlates with the occupation periods reported in archeological studies. Palaeoclimate changes at Vanevan are estimated from (1) water level changes (2) temperature reconstructions based on brGDGTs (3) climate reconstructions based on pollen (through a multi-method approach: Modern Analogue Technique, Weighted Averaging Partial Least Squares regression, Random Forest, and Boosted Regression Trees). Climate reconstructions based on pollen and brGDGTs are rare and the multi-method approach using pollen data is innovative in the region. The results of Vanevan give evidence of high temperatures from 7900 to 5100 cal BP and arid events at 6000, 5000-4500 and 4200 cal BP, in agreement with other regional records.</p>


Author(s):  
Christoph Schwörer ◽  
Erika Gobet ◽  
Jacqueline F. N. van Leeuwen ◽  
Sarah Bögli ◽  
Rachel Imboden ◽  
...  

AbstractObserving natural vegetation dynamics over the entire Holocene is difficult in Central Europe, due to pervasive and increasing human disturbance since the Neolithic. One strategy to minimize this limitation is to select a study site in an area that is marginal for agricultural activity. Here, we present a new sediment record from Lake Svityaz in northwestern Ukraine. We have reconstructed regional and local vegetation and fire dynamics since the Late Glacial using pollen, spores, macrofossils and charcoal. Boreal forest composed of Pinus sylvestris and Betula with continental Larix decidua and Pinus cembra established in the region around 13,450 cal bp, replacing an open, steppic landscape. The first temperate tree to expand was Ulmus at 11,800 cal bp, followed by Quercus, Fraxinus excelsior, Tilia and Corylus ca. 1,000 years later. Fire activity was highest during the Early Holocene, when summer solar insolation reached its maximum. Carpinus betulus and Fagus sylvatica established at ca. 6,000 cal bp, coinciding with the first indicators of agricultural activity in the region and a transient climatic shift to cooler and moister conditions. Human impact on the vegetation remained initially very low, only increasing during the Bronze Age, at ca. 3,400 cal bp. Large-scale forest openings and the establishment of the present-day cultural landscape occurred only during the past 500 years. The persistence of highly diverse mixed forest under absent or low anthropogenic disturbance until the Early Middle Ages corroborates the role of human impact in the impoverishment of temperate forests elsewhere in Central Europe. The preservation or reestablishment of such diverse forests may mitigate future climate change impacts, specifically by lowering fire risk under warmer and drier conditions.


2013 ◽  
Vol 9 (3) ◽  
pp. 1001-1014 ◽  
Author(s):  
C. Hatté ◽  
C. Gauthier ◽  
D.-D. Rousseau ◽  
P. Antoine ◽  
M. Fuchs ◽  
...  

Abstract. Loess sequences have been intensively studied to characterize past glacial climates of the 40–50° north and south latitude zones. Combining different approaches of sedimentology, magnetism, geochemistry, geochronology and malacology allows the general pattern of the climate and environment of the last interglacial–glacial cycle in Eurasia and America to be characterized. Previous studies performed in Europe have highlighted the predominance (if not the sole occurrence) of C3 vegetation. The presence of C3 plants suggests a regular distribution of precipitation along the year. Therefore, even if the mean annual precipitation remained very low during the most extensive glacial times, free water was available for more than 2 months per year. Contrarily, the δ13C record of Surduk (Serbia) clearly shows the occurrence and dominance of C4 plants during at least 4 episodes of the last glacial times at 28.0–26.0 kyr cal BP, 31.4–30.0 kyr cal BP, 53.4–44.5 kyr cal BP and 86.8–66.1 kyr. The C4 plant development is interpreted as a specific atmospheric circulation pattern that induces short and dry summer conditions. As possible explanation, we propose that during "C4 episodes", the Mediterranean Sea would have been under the combined influence of the following: (i) a strong meridional circulation unfavorable to water evaporation that reduced the Mediterranean precipitation on the Balkans; and (ii) a high positive North Atlantic Western Russian (NA/WR)-like atmospheric pattern that favored northerlies over westerlies and reduced Atlantic precipitation over the Balkans. This configuration would imply very dry summers that did not allow C3 plants to grow, thus supporting C4 development. The intra-"C4 episode" periods would have occurred under less drastic oceanic and atmospheric patterns that made the influence of westerlies on the Balkans possible.


2017 ◽  
Vol 43 (2) ◽  
pp. 591 ◽  
Author(s):  
B. Mark ◽  
N. Stansell ◽  
G. Zeballos

The tropical Andes of Peru and Bolivia are important for preserving geomorphic evidence of multiple glaciations, allowing for refinements of chronology to aid in understanding climate dynamics at a key location between hemispheres. This review focuses on the deglaciation from Late-Pleistocene maximum positions near the global Last Glacial Maximum (LGM). We synthesize the results of the most recent published glacial geologic studies from 12 mountain ranges or regions within Peru and Bolivia where glacial moraines and drift are dated with terrestrial cosmogenic nuclides (TCN), as well as maximum and minimum limiting ages based on radiocarbon in proximal sediments. Special consideration is given to document paleoglacier valley localities with topographic information given the strong vertical mass balance sensitivity of tropical glaciers. Specific valley localities show variable and heterogeneous sequences ages and extensions of paleoglaciers, but conform to a generally cogent regional sequence revealed by more continuous lake sedimentary records. There are clear distributions of stratigraphically older and younger moraine ages that we group and discuss chronologically. The timing of the local LGM based on average TCN ages of moraine groups is 25.1 ka, but there are large uncertainties (up to 7 ka) making the relative timing with the global LGM elusive. There are a significant number of post-LGM moraines that date to 18.9 (± 0.5) ka. During the Oldest Dryas (18.0 to 14.6 ka), moraine boulders date to 16.1 (± 1.1) ka, suggesting that glaciers either experienced stillstands or readvances during this interval. The Antarctic Cold Reversal (ACR; 14.6 to 12.6 ka) is another phase of stillstanding or readvancing glaciers with moraine groups dating to 13.7 (± 0.8) ka, followed by retreating ice margins through most of the Younger Dryas (YD; 12.9 to 11.8 ka). During the early Holocene, groups of moraines in multiple valleys date to 11.0 (± 0.4) ka, marking a period when glaciers either readvanced or paused from the overall trend of deglaciation. The pattern of glacial variability during the Late Glacial after ~14.6 ka appears to be more synchronous with periods of cooling in the southern high latitudes, and out-of-phase with the overall deglacial trend in the Northern Hemisphere. While insolation and CO2 forcing likely drove the general pattern of deglaciation in the southern tropical Andes, regional ocean-atmospheric and hypsometric controls must have contributed to the full pattern of glacial variability.


2013 ◽  
Vol 40 (3) ◽  
pp. 177-186
Author(s):  
Jacek Chodorowski ◽  
Andrzej Plak ◽  
Irena Pidek ◽  
Radosław Dobrowolski

AbstractMulti-proxy analysis (sedimentological, palaeobotanical, geochemical data and results of radiocarbon dating) of the biogenic sediments from a small mire ecosystem in the Sandomierz Basin (SE Poland) is presented. The ecosystem contains a full hydroseral sequence from minerotrophic to ombrotrophic wetland. It is one of the few sites in this region which is so thoroughly investigated in terms of the palaeoenvironmental record. Changes in the water supply of the mire area, and consequently the changes in the plant and sediment succession, were well correlated with the regional tendencies in precipitation and temperature during the Late Glacial/Holocene transition and in the Holocene. Human impact is very well recorded in pollen diagram from the Subboreal period.


1993 ◽  
Vol 39 (1) ◽  
pp. 45-54 ◽  
Author(s):  
An Zhisheng ◽  
Stephen C. Porter ◽  
Zhou Weijian ◽  
Lu Yanchou ◽  
Douglas J. Donahue ◽  
...  

AbstractThe Baxie loess section, just east of the Tibetan Plateau, contains evidence showing that the Asian monsoon climate experienced an abrupt reversal near the end of the last glacial age. Rapid deposition of dust under cool, dry full-glacial conditions gave way to an interval of soil development and reduced dust influx attributed to a strengthening of the warm, moist summer monsoon. A subsequent abrupt increase in dust deposition, a response to a weakening of the summer monsoon, was later followed by renewed soil formation as summer monsoon circulation again intensified during the early Holocene. By one interpretation, the thin upper loess is a manifestation of the European Younger Dryas oscillation; however, in this case the available 14C ages require either that (1) onset of loess deposition lagged the beginning of the Younger Dryas event in Europe by as much as 2000 calibrated 14C years or (2) all the 14C ages are too young, possibly due to contamination. Alternatively, the late-glacial paleosol, the top of which is synchronous with the abrupt end of the late-glacial δ18O anomaly in the Dye 3 Greenland ice core, records the Younger Dryas event. Such an interpretation is consistent with general circulation model simulations of Younger Dryas climate that show strong seasonality and a strengthened summer monsoon, and with marine cores from the western Pacific Ocean that contain evidence of pronounced cooling of surface waters during Younger Dryas time.


2012 ◽  
Vol 8 (1) ◽  
pp. 59-78 ◽  
Author(s):  
J. Lebamba ◽  
A. Vincens ◽  
J. Maley

Abstract. This paper presents quantitative reconstructions of vegetation and climate along the pollen sequence of Lake Barombi Mbo, southwestern Cameroon (4°39'45.75" N, 9°23'51.63" E, 303 m a.s.l.) during the last 33 000 cal yr BP, improving previous empirical interpretations. The biomisation method was applied to reconstruct potential biomes and forest successional stages. Mean annual precipitation, mean annual potential evapotranspiration and an index of moisture availability were reconstructed using modern analogues and an artificial neural network technique. The results show a dense forested environment around Lake Barombi Mbo of mixed evergreen/semi-deciduous type during the most humid phases (highest precipitation and lowest evapotranspiration), but with a more pronounced semi-deciduous type from ca. 6500 cal yr BP to the present day, related to increased seasonality. This forest displays a mature character until ca. 2800 cal yr BP, then becomes of secondary type during the last millennium, probably due to increased human activity. Two episodes of forest fragmentation are shown, which are synchronous with the lowest reconstructed precipitation and highest potential evapotranspiration values. The first of these occurs during the LGM, and the second one from ca. 3000 to ca. 1200 cal yr BP, mainly linked to high precipitation seasonality. Savanna were, however, never extensive within the Barombi Mbo basin, existing instead inside the forest in form of savanna patches. The climate reconstructions at Lake Barombi Mbo suggest that the artificial neural networks technique would be more reliable in this region, although the annual precipitation values are likely under-estimated through the whole sequence.


2016 ◽  
Author(s):  
Xinyu Wen ◽  
Zhengyu Liu ◽  
Zhongxiao Chen ◽  
Esther Brady ◽  
David Noone ◽  
...  

Abstract. Water isotope in precipitation has played a key role in the reconstruction of past climate on millennial and longer timescales. However, for mid-latitude regions like East Asia with complex terrain, the reliability behind the basic assumptions of the temperature effect and amount effect are based on modern observational data and still remains unclear for past climate. In the present work, we re-examine the two basic effects on seasonal, interannual, and millennial timescales in a set of time slice experiments for the period 22 ka thru 00 ka using an isotope-enable AGCM. Our study confirms the robustness of the temperature and amount effects on the seasonal cycle over China, with the temperature effect dominating in northern China, and the amount effect dominating in deep southern China, but no one distinct in the transition region of central China. However, our analysis does not show significant temperature and amount effects over China on millennial and interannual timescales, which is a challenge to those classic assumptions in past climate reconstruction. Our work helps shed light on the interpretation of the proxy record of δ18O from modeling point of view.


Sign in / Sign up

Export Citation Format

Share Document