scholarly journals Dendrochronologically dated pine stumps document phase-wise bog expansion at a northwest German site between ca. 6700 and ca. 3400 BC

2018 ◽  
Vol 14 (1) ◽  
pp. 85-100 ◽  
Author(s):  
Inke Elisabeth Maike Achterberg ◽  
Jan Eckstein ◽  
Bernhard Birkholz ◽  
Andreas Bauerochse ◽  
Hanns Hubert Leuschner

Abstract. The investigated northwest German mire site at “Totes Moor” is densely covered with subfossil pine stumps (Pinus sylvestris L.) from the fen–bog transition. This facilitates the spatio-temporal reconstruction of mire development, which is based on 212 in situ tree stumps in the case study presented here. Six dendrochronologically dated site chronologies together cover 2345 years between 6703 and 3403 BC. The gaps in between are 6 to 550 years long. Additionally, a floating chronology of 309 years, containing 30 trees, was radiocarbon-dated to the beginning of the 7th millennium cal BC. Peat-stratigraphical survey was carried out additionally, and elevations a.s.l. were determined at several locations. Tree dying-off phases, which indicate water level rise at the site, mostly in context of the local fen–bog transition, are evident for ca. 6600–6450, ca. 6350–5750, ca. 5300–4900, ca. 4700–4550, ca. 3900–3850, ca. 3700–3600, ca. 3500–3450 and ca. 3400 BC. The spatial distribution of the dated in situ trees illustrates the phase-wise expansion of raised bog over fen peat at the site. The documented bog expansion pulses likely correspond to climatic wet sifts.

2017 ◽  
Author(s):  
Inke Elisabeth Maike Achterberg ◽  
Jan Eckstein ◽  
Bernhard Birkholz ◽  
Andreas Bauerochse ◽  
Hanns Hubert Leuschner

Abstract. This is a dendrochronological investigation of a mire site densely covered by peat-preserved pine stumps (Pinus sylvestris). The site in the northwest German Tote Moor revealed to feature trees from various Holocene millennia. The dendrochronologically dated site chronology covers 2345 years between 6703 BC and 3403 BC, containing 5 gaps between 6 and 550 years in length. It consists of 477 trees. A floating chronology segment of 309 years, containing 30 trees, was radiocarbon dated to the beginning of the 7th millennium cal. BC. The tree ring data from the site documents environmental changes over a larger period of time. Furthermore, the site is covered densely with in situ tree stumps from the fen-bog transition. This facilitates the spatio-temporal reconstruction of mire development, which is based on 212 in situ tree stumps in the case study presented here. Peat-stratigraphical survey was carried out additionally, and elevations a.s.l. were determined at several locations. Tree die-off phases, which indicate the local water level rise, mostly in context of the local fen-bog transition, are evident for c. 6600–6450 BC, c. 6350–5750 BC, c. 5300–4900 BC, c. 4700–4550 BC, c. 3900–3850 BC, 3700–3600 BC, c. 3500–3450 BC and c. 3400 BC.


2019 ◽  
Vol 8 (8) ◽  
pp. 359
Author(s):  
Xing ◽  
Su ◽  
Liu ◽  
Su ◽  
Zhang

Information from social media microblogging has been applied to management of emergency situations following disasters. In particular, such blogs contain much information about the public perception of disasters. However, the effective collection and use of disaster information from microblogs still presents a significant challenge. In this paper, a spatial distribution detection method is established using emergency information based on the urgency degree grading of microblogs and spatial autocorrelation analysis. Moreover, a character-level convolutional neural network classifier is applied for microblog classification in order to mine the spatio-temporal change process of emergency rescue information. The results from the Jiuzhaigou (Sichuan, China) earthquake case study demonstrate that different emergency information types exhibit different time variation characteristics. Moreover, spatial autocorrelation analysis based on the degree of text urgency can exclude uneven spatial distribution influences of the number of microblog users, and accurately determine the level of urgency of the situation. In addition, the classification and spatio-temporal analysis methods combined in this study can effectively mine the required emergency information, allowing us to understand emergency information spatio-temporal changes. Our study can be used as a reference for microblog information applications within the field of emergency rescue activity.


2020 ◽  
Vol 27 (4) ◽  
Author(s):  
A. I. Zaytsev ◽  
E. N. Pelinovsky ◽  
D. Dogan ◽  
B. Yalciner ◽  
A. Yalciner ◽  
...  

Purpose. Investigation of the storm surge in Korsakov in the southern part of the Sakhalin Island on November 15, 2019 and comparison of the results of its numerical simulation with the data of in situ measurements constitute the aim of the article. Methods and Results. In situ measurements of the storm surge in Korsakov (the Sakhalin region) were performed and the data on the flooded area dimensions were collected. A storm period on the Sakhalin Island is almost the annual event in an autumn-winter season. The severe storm that happened in the southern Sakhalin region on November 15, 2019 led to flooding of the port territory in Korsakov. Due to the NAMI-DANCE computational complex, the storm surge was numerically simulated within the framework of the system of shallow water equations in the spherical coordinates on the rotating Earth with the regard for the friction force and the atmospheric effect. The calculations included the data on temporal and spatial distribution of the wind speed at the altitude 10 m taken from the Climate Forecast System Reanalysis database. The data on the atmospheric pressure were not applied in simulations since the atmosphere pressure gradient at the area under study was small. The simulation was carried out in the course of three days. The simulations showed that in 20 hours after the wind forcing had started, the water level in the port increased up to its maximum values, and did not fall the whole day. The water level maximum heights were concentrated in the southwestern part of the Aniva Bay. At that the calculated current speeds reached 2 m/s. During the storm, at the wind speed up to 15 m/s, the storm surge height in the Korsakov port area constituted 1.7 m, whereas the width of the flooded zone was up to 200 m. These results are confirmed well by the in situ measurement data. Conclusions. The simulation values of the power characteristics for the above-mentioned storm are represented in the paper. The Froude number square reaches 0.03 in the Korsakov city port area, and spatial distribution of the wave strength moment is up to 1 m3/s2. Field measurements and eyewitness reports confirm the evidence of a powerful impact of a storm surge upon the port constructions.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


2018 ◽  
pp. 60-67
Author(s):  
Henrika Pihlajaniemi ◽  
Anna Luusua ◽  
Eveliina Juntunen

This paper presents the evaluation of usersХ experiences in three intelligent lighting pilots in Finland. Two of the case studies are related to the use of intelligent lighting in different kinds of traffic areas, having emphasis on aspects of visibility, traffic and movement safety, and sense of security. The last case study presents a more complex view to the experience of intelligent lighting in smart city contexts. The evaluation methods, tailored to each pilot context, include questionnaires, an urban dashboard, in-situ interviews and observations, evaluation probes, and system data analyses. The applicability of the selected and tested methods is discussed reflecting the process and achieved results.


2019 ◽  
Vol 12 (9-10) ◽  
pp. 38-48
Author(s):  
V. I. Batuev ◽  
I. L. Kalyuzhny

The development of the European North of Russia, where flat and high-hummocky bog complexes are spread, requires information on the processes of formation of their hydrological regime and freezing of this territory. For the first time, based on observational data, for the period from 1993 to 2013, characteristics of the hydrological regime and freezing of hummocky bogs in Northern European Russia are presented, the case study of the Lovozerskoye bog. The observations were carried out in accordance with the unified methods, approved for the specialized network of Roshydromet bog stations. The regularities of the formation of the hydrological regime of hummocky bogs have been revealed: bog water level drops dramatically from the beginning of freezing to the end of March, rises during snow melt period, slightly drops in summer and rises in autumn. The main feature of hummocky bogs is permafrost, which determines their specific structure. It has been discovered that gravitation snowmelt and liquid precipitation waters relatively quickly run down the hummocks over the frozen layer into hollows between them. Levels of bog waters on the hummocks are absent for a longer period of time. In spring, the amplitude of water level rise in swamplands is on average 60–80 cm. Air temperature and insulation properties of snow are the main factors that influence the bog freezing. Hummocks freeze out as deep as 63–65 cm, which corresponds to the depth of their seasonal thawing in the warm period of the year, and adjoin the permafrost. The greatest depth of freezing of the swamplands is 82 – 87 cm, with an average of 68 cm. The frozen layer at swamplands thaws out from both its upper and bottom sides. The melting of the frozen layer at hummocks occurs only from the bog surface with an average intensity of 0,51 cm/day.


2013 ◽  
Vol 16 (1) ◽  
pp. 59-67

<p>The Soil Science Institute of Thessaloniki produces new digitized Soil Maps that provide a useful electronic database for the spatial representation of the soil variation within a region, based on in situ soil sampling, laboratory analyses, GIS techniques and plant nutrition mathematical models, coupled with the local land cadastre. The novelty of these studies is that local agronomists have immediate access to a wide range of soil information by clicking on a field parcel shown in this digital interface and, therefore, can suggest an appropriate treatment (e.g. liming, manure incorporation, desalination, application of proper type and quantity of fertilizer) depending on the field conditions and cultivated crops. A specific case study is presented in the current work with regards to the construction of the digitized Soil Map of the regional unit of Kastoria. The potential of this map can easily be realized by the fact that the mapping of the physicochemical properties of the soils in this region provided delineation zones for differential fertilization management. An experiment was also conducted using remote sensing techniques for the enhancement of the fertilization advisory software database, which is a component of the digitized map, and the optimization of nitrogen management in agricultural areas.</p>


Sign in / Sign up

Export Citation Format

Share Document