scholarly journals Tree growth and its climate signal along latitudinal and altitudinal gradients: comparison of tree rings between Finland and the Tibetan Plateau

2017 ◽  
Vol 14 (12) ◽  
pp. 3083-3095 ◽  
Author(s):  
Lixin Lyu ◽  
Susanne Suvanto ◽  
Pekka Nöjd ◽  
Helena M. Henttonen ◽  
Harri Mäkinen ◽  
...  

Abstract. Latitudinal and altitudinal gradients can be utilized to forecast the impact of climate change on forests. To improve the understanding of how these gradients impact forest dynamics, we tested two hypotheses: (1) the change of the tree growth–climate relationship is similar along both latitudinal and altitudinal gradients, and (2) the time periods during which climate affects growth the most occur later towards higher latitudes and altitudes. To address this, we utilized tree-ring data from a latitudinal gradient in Finland and from two altitudinal gradients on the Tibetan Plateau. We analysed the latitudinal and altitudinal growth patterns in tree rings and investigated the growth–climate relationship of trees by correlating ring-width index chronologies with climate variables, calculating with flexible time windows, and using daily-resolution climate data. High latitude and altitude plots showed higher correlations between tree-ring chronologies and growing season temperature. However, the effects of winter temperature showed contrasting patterns for the gradients. The timing of the highest correlation with temperatures during the growing season at southern sites was approximately 1 month ahead of that at northern sites in the latitudinal gradient. In one out of two altitudinal gradients, the timing for the strongest negative correlation with temperature at low-altitude sites was ahead of treeline sites during the growing season, possibly due to differences in moisture limitation. Mean values and the standard deviation of tree-ring width increased with increasing mean July temperatures on both types of gradients. Our results showed similarities of tree growth responses to increasing seasonal temperature between latitudinal and altitudinal gradients. However, differences in climate–growth relationships were also found between gradients due to differences in other factors such as moisture conditions. Changes in the timing of the most critical climate variables demonstrated the necessity for the use of daily-resolution climate data in environmental gradient studies.

2017 ◽  
Author(s):  
Lixin Lyu ◽  
Susanne Suvanto ◽  
Pekka Nöjd ◽  
Helena M. Henttonen ◽  
Harri Mäkinen ◽  
...  

Abstract. Latitudinal and altitudinal gradients can be utilized to forecast the impacts of climate changes on forests. To improve the understanding of forest dynamics on these gradients, we tested two hypotheses: (1) the change in the tree growth-climate relationship is similar along both latitudinal and altitudinal gradients, and (2) the time periods during which climate affects growth the most occur later towards higher latitudes and altitudes. We used tree-ring data from a latitudinal gradient in Finland and two altitudinal gradients on the Tibetan Plateau. We analysed the latitudinal and altitudinal growth patterns in tree-rings and investigated the growth-climate relationships of trees by correlating ring-width index chronologies with climate variables calculated with flexible time-windows, using daily-resolution climate data. The high latitude and altitude plots showed higher correlations between the tree-ring chronologies and growing season temperature. However, the effects of winter temperature showed differing patterns for the gradients. The timing of highest correlation with summer temperatures in southern sites was approximately one month ahead of the northern sites in the latitudinal gradient. In one out of the two altitudinal gradients the timing of strongest negative correlation with summer temperatures at low altitude sites was ahead of the treeline sites, possibly due to differences in moisture limitation. Mean values and the standard deviation of tree-ring width was found to increase with increasing mean summer temperatures on both types of gradients. Our results showed similarities of tree growth responses to growing season temperature between latitudinal and altitudinal gradients. However, differences in climate-growth relationships were also found between the gradients, due to differences in other factors, such as moisture conditions. Changes in the timing of the most critical climate variables demonstrated the need to use daily resolution climate data in studies on environmental gradients.


2021 ◽  
Vol 17 (6) ◽  
pp. 2381-2392
Author(s):  
Maierdang Keyimu ◽  
Zongshan Li ◽  
Bojie Fu ◽  
Guohua Liu ◽  
Fanjiang Zeng ◽  
...  

Abstract. Trees record climatic conditions during their growth, and tree rings serve as proxy to reveal the features of the historical climate of a region. In this study, we collected tree-ring cores of hemlock forest (Tsuga forrestii) from the northwestern Yunnan area of the southeastern Tibetan Plateau (SETP) and created a residual tree-ring width (TRW) chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growing season (NGS) (from November of the previous year to February of the current year) was the most important constraining factor on the radial tree growth of hemlock forests in this region. In addition, the influence of NGS precipitation on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation over the period spanning from 1600–2005. The reconstruction accounted for 28.5 % of the actual variance during the common period of 1956–2005. Based on the reconstruction, NGS was extremely dry during the years 1656, 1694, 1703, 1736, 1897, 1907, 1943, 1982 and 1999. In contrast, the NGS was extremely wet during the years 1627, 1638, 1654, 1832, 1834–1835 and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought Severity Index (PDSI) reconstructions of early growing season from surrounding regions indicated the reliability of the present reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our reconstruction was representative of the NGS precipitation variability of a large region in the SETP. Our study provides the first historical NGS precipitation reconstruction in the SETP which enriches the understanding of the long-term climate variability of this region. The NGS precipitation showed slightly increasing trend during the last decade which might accelerate regional hemlock forest growth.


2021 ◽  
Author(s):  
Marina Fonti ◽  
Olga Churakova (Sidorova) ◽  
Ivan Tychkov

<p>Air temperature increase and change in precipitation regime have a significant impact on northern forests leading to the ambiguous consequences due to the complex interaction between the ecosystem plant components and permafrost. One of the major interests in such circumstances is to understand how tree growth of the main forest species of the Siberian North will change under altering climatic conditions. In this work, we applied the process-based Vaganov-Shashkin model (VS - model) of tree growth in order to estimate the daily impact of climatic conditions on tree-ring width of larch trees in northeastern Yakutia (Larix cajanderi Mayr.) and eastern Taimyr (Larix gmelinii Rupr. (Rupr.) for the period 1956-2003, and to determine the extent to which the interaction of climatic factors (temperature and precipitation) is reflected in the tree-ring anatomical structure. Despite the location of the study sites in the harsh conditions of the north, and temperature as the main limiting factor, it was possible to identify a period during the growing season when tree growth was limited by lack of soil moisture. The application of the VS-model for the studied regions allowed establishing in which period of the growing season the water stress is most often manifest itself, and how phenological phases (beginning, cessation, and duration of larch growth) vary among the years.</p><p>The research was funded by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-44-240001 and by the Russian Ministry of Science and Higher Education (projects FSRZ-2020-0010).</p>


IAWA Journal ◽  
2009 ◽  
Vol 30 (4) ◽  
pp. 443-457 ◽  
Author(s):  
Keyan Fang ◽  
Xiaohua Gou ◽  
Delphis F. Levia ◽  
Jinbao Li ◽  
Fen Zhang ◽  
...  

Fourteen tree-ring width chronologies were developed along three altitudinal gradients for three mountain ranges in arid north central China. The chronology statistics, combined with results of a rotated principle component analysis (RPCA), suggest that physiological gradients play a more important role in determining tree-growth patterns than altitudinal gradients. As indicated by climate-growth relationships, temperature is mainly related to the low-frequency tree-ring variability, while precipitation is more influential on the high-frequency tree-ring variability. At the low-frequency band, chronologies across species from lower and upper forest limits were generally well correlated, except at the upper site of the Xinglong Mountain. It is plausible that similar temperature-shaped climate-growth relationships in the low-frequency domain may lead to similar growth patterns at this frequency band. Regarding the differing results for the Xinglong Mountain, our interpretation is that the changed growth patterns resulted from the varying climate-growth correlation patterns along the larger altitudinal gradients. The temperature and precipitation limitations for tree growth decrease along the increasing altitudinal gradients.


2021 ◽  
Author(s):  
Maierdang Keyimu ◽  
Zongshan Li ◽  
Bojie Fu ◽  
Guohua Liu ◽  
Weiliang Chen ◽  
...  

Abstract. Trees record climatic conditions during their growth, and tree-rings serve as a proxy to reveal the features of the historical climate of a region. In this study, we collected tree-ring cores of forest hemlock (Tsuga forrestii) from the northwestern Yunnan area of the southeastern Tibetan Plateau (SETP), and created a residual tree-ring width (TRW) chronology. An analysis of the relationship between tree growth and climate revealed that precipitation during the non-growth season (NGS) (from November of the previous year to February of the current year) was the most important constraining factor on the radial tree growth of forest hemlock in this region. In addition, the influence of NGS precipitation on radial tree growth was relatively uniform over time (1956–2005). Accordingly, we reconstructed the NGS precipitation over the period spanning from A.D. 1475–2005. The reconstruction accounted for 28.5 % of the actual variance during the common period 1956–2005, and the leave-one-out verification parameters indicated the reliability of the reconstruction. Based on the reconstruction, NGS was extremely dry during the years A.D. 1475, 1656, 1670, 1694, 1703, 1736, 1897, 1907, 1943, 1969, 1982, and 1999. In contrast, the NGS was extremely wet during the years A.D. 1491, 1536, 1558, 1627, 1638, 1654, 1832, 1834–1835, and 1992. Similar variations of the NGS precipitation reconstruction series and Palmer Drought Severity Index (PDSI) reconstructions from surrounding regions indicated the reliability of the reconstruction. A comparison of the reconstruction with Climate Research Unit (CRU) gridded data revealed that our reconstruction was representative of the NGS precipitation variability of a large region in the SETP.


2017 ◽  
Vol 114 (27) ◽  
pp. 6966-6971 ◽  
Author(s):  
Bao Yang ◽  
Minhui He ◽  
Vladimir Shishov ◽  
Ivan Tychkov ◽  
Eugene Vaganov ◽  
...  

Phenological responses of vegetation to climate, in particular to the ongoing warming trend, have received much attention. However, divergent results from the analyses of remote sensing data have been obtained for the Tibetan Plateau (TP), the world’s largest high-elevation region. This study provides a perspective on vegetation phenology shifts during 1960–2014, gained using an innovative approach based on a well-validated, process-based, tree-ring growth model that is independent of temporal changes in technical properties and image quality of remote sensing products. Twenty composite site chronologies were analyzed, comprising about 3,000 trees from forested areas across the TP. We found that the start of the growing season (SOS) has advanced, on average, by 0.28 d/y over the period 1960–2014. The end of the growing season (EOS) has been delayed, by an estimated 0.33 d/y during 1982–2014. No significant changes in SOS or EOS were observed during 1960–1981. April–June and August–September minimum temperatures are the main climatic drivers for SOS and EOS, respectively. An increase of 1 °C in April–June minimum temperature shifted the dates of xylem phenology by 6 to 7 d, lengthening the period of tree-ring formation. This study extends the chronology of TP phenology farther back in time and reconciles the disparate views on SOS derived from remote sensing data. Scaling up this analysis may improve understanding of climate change effects and related phenological and plant productivity on a global scale.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1251
Author(s):  
Yu Zhang ◽  
Jinjian Li ◽  
Zeyu Zheng ◽  
Shenglan Zeng

Due to the lack of long-term climate records, our understanding of paleoclimatic variability in the Tibetan Plateau (TP) is still limited. In this study, we developed a tree-ring width (TRW) chronology based on tree-ring cores collected from our study site, southeastern TP. This chronology responded well to the mean maximum temperatures of May–June and was thus used to reconstruct early summer (May–June) maximum temperature during the period 1541–2019. The reconstruction explained 33.6% of the climatic variance during the calibration period 1962–2019. There were 34 extremely warm years (7.2% of total years) and 36 extremely cold years (7.5% of total years) during the reconstruction period. The spatial correlation analysis and the comparison with other local temperature reconstructions confirmed the reliability and representativeness of our reconstruction. The results of the ensemble empirical mode decomposition (EEMD) analysis indicated quasi-oscillations of 2.9–4.2 years, 4.5–8.3 years, 11.1–15.4 years, 20–33.3 years, 50.4 years, 159.7 years, and 250 years in this temperature reconstruction which may be associated with ENSO cycles, solar activity, and PDO.


2010 ◽  
Vol 40 (2) ◽  
pp. 200-211 ◽  
Author(s):  
Eryuan Liang ◽  
Xuemei Shao ◽  
Dieter Eckstein ◽  
Xiaohong Liu

Little is known about the spatial variability in tree growth and its responses to climate on the Tibetan Plateau; however, such information is essential for improving predictions of forest ecosystem response to climatic change. A network of 16 ring width chronologies was developed along a latitudinal transect in the Qilian Mountains, northeastern Tibetan Plateau. A principal components analysis revealed that the residual chronologies had a positive loading on the first unrotated principal component (PC1). After rotation, PC1 yielded the highest loadings on the driest sites in the northwest and decreased to the south and to the east. PC2 was negatively correlated with altitude. Moisture availability was a dominant limiting factor for tree growth, and this dominance increased northwards and westwards along the precipitation gradient. Loadings of the first two rotated principal components separated the 16 forest sites into three major groups corresponding to the three regions affected by the East Asian Monsoon, Westerlies, and their interaction. Thus, spatial variability in tree growth is an excellent bioindicator of regional climate.


Sign in / Sign up

Export Citation Format

Share Document