scholarly journals Calendar effects on surface air temperature and precipitation based on model-ensemble equilibrium and transient simulations from PMIP4 and PACMEDY

2021 ◽  
Author(s):  
Xiaoxu Shi ◽  
Martin Werner ◽  
Carolin Krug ◽  
Chris M. Brierley ◽  
Anni Zhao ◽  
...  

Abstract. Numerical modelling enables a comprehensive understanding not only of the Earth's system today, but also of the past. To date, a significant amount of time and effort has been devoted to paleoclimate modeling and analysis, which involves the latest and most advanced Paleoclimate Modelling Intercomparison Project phase 4 (PMIP4). The definition of seasonality, which is influenced by slow variations in the Earth's orbital parameters, plays a key role in determining the calculated seasonal cycle of the climate. In contrast to the classical calendar used today, where the lengths of the months and seasons are fixed, the angular calendar calculates the lengths of the months and seasons according to a fixed number of degrees along the Earth's orbit. When comparing simulation results for different time intervals, it is essential to account for the angular calendar to ensure that the data for comparison is from the same position along the Earth's orbit. Most models use the classical "fixed-length" calendar, which can lead to strong distortions of the monthly and seasonal values, especially for the climate of the past. Here, by analyzing daily outputs from multiple PMIP4 model simulations, we examine calendar effects on surface air temperature and precipitation under mid-Holocene, last interglacial, and pre-industrial climate conditions. We conclude that: (a) The largest cooling bias occurs in autumn when the classical calendar is applied for the mid-Holocene and last interglacial. (b) The sign of the temperature anomalies between the Last Interglacial and pre-industrial in boreal autumn can be reversed after the switch from classical to angular calendar, particularly over the Northern Hemisphere continents. (c) Precipitation over West Africa is overestimated in boreal summer and underestimated in boreal autumn when the "fixed-length" seasonal cycle is applied. (d) Finally, correcting the calendar based on the monthly model results can reduce the biases to a large extent, but not completely eliminate them. In addition, we examine the calendar effects in 3 transient simulations for 6–0 ka by AWI-ESM, MPI-ESM, and IPSL. We find significant discrepancies between adjusted and unadjusted temperature values over ice-free continents for both hemispheres in boreal autumn. While for other seasons the deviations are relatively small. A drying bias can be found in the summer monsoon precipitation in Africa (in the "fixed-length" calendar), whereby the magnitude of bias becomes smaller over time. Overall, our study underlines the importance of the application of calendar transformation in the analysis of climate simulations. Neglecting the calendar effects could lead to a profound artificial distortion of the calculated seasonal cycle of surface air temperature and precipitation. One important fact to be noted here is that the discrepancy in seasonality under different calendars is an analysis bias and is highly depends on the choice of the reference position/date (usually the vernal equinox, which is set to 31th March) on the Earth's ellipse around the sun. Different model groups may apply different reference dates, so ensuring a consistent reference date and seasonal definition is key when we compare results across multiple models.

2008 ◽  
Vol 9 (4) ◽  
pp. 804-815 ◽  
Author(s):  
Sarith P. P. Mahanama ◽  
Randal D. Koster ◽  
Rolf H. Reichle ◽  
Max J. Suarez

Abstract Anomalous atmospheric conditions can lead to surface temperature anomalies, which in turn can lead to temperature anomalies in the subsurface soil. The subsurface soil temperature (and the associated ground heat content) has significant memory—the dissipation of a temperature anomaly may take weeks to months—and thus subsurface soil temperature may contribute to the low-frequency variability of energy and water variables elsewhere in the system. The memory may even provide some skill to subseasonal and seasonal forecasts. This study uses three long-term AGCM experiments to isolate the contribution of subsurface soil temperature variability to variability elsewhere in the climate system. The first experiment consists of a standard ensemble of Atmospheric Model Intercomparison Project (AMIP)-type simulations in which the subsurface soil temperature variable is allowed to interact with the rest of the system. In the second experiment, the coupling of the subsurface soil temperature to the rest of the climate system is disabled; that is, at each grid cell, the local climatological seasonal cycle of subsurface soil temperature (as determined from the first experiment) is prescribed. Finally, a climatological seasonal cycle of sea surface temperature (SST) is prescribed in the third experiment. Together, the three experiments allow the isolation of the contributions of variable SSTs, interactive subsurface soil temperature, and chaotic atmospheric dynamics to meteorological variability. The results show that allowing an interactive subsurface soil temperature does, indeed, significantly increase surface air temperature variability and memory in most regions. In many regions, however, the impact is negligible, particularly during boreal summer.


2019 ◽  
Vol 32 (24) ◽  
pp. 8537-8561 ◽  
Author(s):  
Jiao Chen ◽  
Aiguo Dai ◽  
Yaocun Zhang

Abstract Increases in atmospheric greenhouse gases will not only raise Earth’s temperature but may also change its variability and seasonal cycle. Here CMIP5 model data are analyzed to quantify these changes in surface air temperature (Tas) and investigate the underlying processes. The models capture well the mean Tas seasonal cycle and variability and their changes in reanalysis, which shows decreasing Tas seasonal amplitudes and variability over the Arctic and Southern Ocean from 1979 to 2017. Daily Tas variability and seasonal amplitude are projected to decrease in the twenty-first century at high latitudes (except for boreal summer when Tas variability increases) but increase at low latitudes. The day of the maximum or minimum Tas shows large delays over high-latitude oceans, while it changes little at low latitudes. These Tas changes at high latitudes are linked to the polar amplification of warming and sea ice loss, which cause larger warming in winter than summer due to extra heating from the ocean during the cold season. Reduced sea ice cover also decreases its ability to cause Tas variations, contributing to the decreased Tas variability at high latitudes. Over low–midlatitude oceans, larger increases in surface evaporation in winter than summer (due to strong winter winds, strengthened winter winds in the Southern Hemisphere, and increased winter surface humidity gradients over the Northern Hemisphere low latitudes), coupled with strong ocean mixing in winter, lead to smaller surface warming in winter than summer and thus increased seasonal amplitudes there. These changes result in narrower (wider) Tas distributions over the high (low) latitudes, which may have important implications for other related fields.


1992 ◽  
Vol 19 (4) ◽  
pp. 349-353 ◽  
Author(s):  
Robert C. Balling ◽  
Sherwood B. Idso

In reviewing the results of our analyses of European temperature and precipitation data, we see patterns that are similar to those discovered in our prior studies of the United States and the British Isles: precipitation begins to increase at about the time that Northern Hemispheric SO2 emissions began their rapid ascension, while prior upward trends of surface-air temperature are dramatically truncated.We also find that surface-air temperature trends of different localities over the past three-and-a-half decades are closely tied to the amount of aerosol sulphates in the atmosphere above them. The wide range and thrust of these several observations, along with their theoretical expectation, provides strong support for the premise that anthropo-generated climate change is indeed occurring in Europe, but that it may well be SO2-induced rather than CO2-induced.


2005 ◽  
Vol 18 (16) ◽  
pp. 3217-3228 ◽  
Author(s):  
D. W. Shin ◽  
S. Cocke ◽  
T. E. LaRow ◽  
James J. O’Brien

Abstract The current Florida State University (FSU) climate model is upgraded by coupling the National Center for Atmospheric Research (NCAR) Community Land Model Version 2 (CLM2) as its land component in order to make a better simulation of surface air temperature and precipitation on the seasonal time scale, which is important for crop model application. Climatological and seasonal simulations with the FSU climate model coupled to the CLM2 (hereafter FSUCLM) are compared to those of the control (the FSU model with the original simple land surface treatment). The current version of the FSU model is known to have a cold bias in the temperature field and a wet bias in precipitation. The implementation of FSUCLM has reduced or eliminated this bias due to reduced latent heat flux and increased sensible heat flux. The role of the land model in seasonal simulations is shown to be more important during summertime than wintertime. An additional experiment that assimilates atmospheric forcings produces improved land-model initial conditions, which in turn reduces the biases further. The impact of various deep convective parameterizations is examined as well to further assess model performance. The land scheme plays a more important role than the convective scheme in simulations of surface air temperature. However, each convective scheme shows its own advantage over different geophysical locations in precipitation simulations.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1543
Author(s):  
Reinhardt Pinzón ◽  
Noriko N. Ishizaki ◽  
Hidetaka Sasaki ◽  
Tosiyuki Nakaegawa

To simulate the current climate, a 20-year integration of a non-hydrostatic regional climate model (NHRCM) with grid spacing of 5 and 2 km (NHRCM05 and NHRCM02, respectively) was nested within the AGCM. The three models did a similarly good job of simulating surface air temperature, and the spatial horizontal resolution did not affect these statistics. NHRCM02 did a good job of reproducing seasonal variations in surface air temperature. NHRCM05 overestimated annual mean precipitation in the western part of Panama and eastern part of the Pacific Ocean. NHRCM05 is responsible for this overestimation because it is not seen in MRI-AGCM. NHRCM02 simulated annual mean precipitation better than NHRCM05, probably due to a convection-permitting model without a convection scheme, such as the Kain and Fritsch scheme. Therefore, the finer horizontal resolution of NHRCM02 did a better job of replicating the current climatological mean geographical distributions and seasonal changes of surface air temperature and precipitation.


2011 ◽  
Vol 24 (19) ◽  
pp. 5108-5124 ◽  
Author(s):  
Liwei Jia ◽  
Timothy DelSole

A new statistical optimization method is used to identify components of surface air temperature and precipitation on six continents that are predictable in multiple climate models on multiyear time scales. The components are identified from unforced “control runs” of the Coupled Model Intercomparison Project phase 3 dataset. The leading predictable components can be calculated in independent control runs with statistically significant skill for 3–6 yr for surface air temperature and 1–3 yr for precipitation, depending on the continent, using a linear regression model with global sea surface temperature (SST) as a predictor. Typically, lag-correlation maps reveal that the leading predictable components of surface air temperature are related to two types of SST patterns: persistent patterns near the continent itself and an oscillatory ENSO-like pattern. The only exception is Europe, which has no significant ENSO relation. The leading predictable components of precipitation are significantly correlated with an ENSO-like SST pattern. No multiyear predictability of land precipitation could be verified in Europe. The squared multiple correlations of surface air temperature and precipitation for nonzero lags on each continent are less than 0.4 in the first year, implying that less than 40% of variations of the leading predictable component can be predicted from global SST. The predictable components describe the spatial structures that can be predicted on multiyear time scales in the absence of anthropogenic and natural forcing, and thus provide a scientific rationale for regional prediction on multiyear time scales.


2009 ◽  
Vol 48 (3) ◽  
pp. 429-449 ◽  
Author(s):  
Yves Durand ◽  
Martin Laternser ◽  
Gérald Giraud ◽  
Pierre Etchevers ◽  
Bernard Lesaffre ◽  
...  

Abstract Since the early 1990s, Météo-France has used an automatic system combining three numerical models to simulate meteorological parameters, snow cover stratification, and avalanche risk at various altitudes, aspects, and slopes for a number of mountainous regions in France. Given the lack of sufficient directly observed long-term snow data, this “SAFRAN”–Crocus–“MEPRA” (SCM) model chain, usually applied to operational avalanche forecasting, has been used to carry out and validate retrospective snow and weather climate analyses for the 1958–2002 period. The SAFRAN 2-m air temperature and precipitation climatology shows that the climate of the French Alps is temperate and is mainly determined by atmospheric westerly flow conditions. Vertical profiles of temperature and precipitation averaged over the whole period for altitudes up to 3000 m MSL show a relatively linear variation with altitude for different mountain areas with no constraint of that kind imposed by the analysis scheme itself. Over the observation period 1958–2002, the overall trend corresponds to an increase in the annual near-surface air temperature of about 1°C. However, variations are large at different altitudes and for different seasons and regions. This significantly positive trend is most obvious in the 1500–2000-m MSL altitude range, especially in the northwest regions, and exhibits a significant relationship with the North Atlantic Oscillation index over long periods. Precipitation data are diverse, making it hard to identify clear trends within the high year-to-year variability.


Sign in / Sign up

Export Citation Format

Share Document