scholarly journals Documentary-based climate reconstructions in the Czech Lands 1501–2020 CE and their European context

2021 ◽  
Author(s):  
Rudolf Brázdil ◽  
Petr Dobrovolný ◽  
Jiří Mikšovský ◽  
Petr Pišoft ◽  
Miroslav Trnka ◽  
...  

Abstract. Annual and seasonal temperature, precipitation and drought index (SPI, SPEI, Z-index, PDSI) series covering the Czech Lands territory (now the Czech Republic) over 520 years (1501–2020 CE) reconstructed from documentary data combined with instrumental observations were analysed herein. The temperature series exhibits a statistically significant increasing trend, rising from ~1890 and particularly from the 1970s; 1991–2020 represents the warmest and driest 30-year period since 1501 CE. While the long-term precipitation total fluctuations (and derived SPI fluctuations) remain relatively stable with annual and decadal variabilities, past temperature increases are the key factor affecting recent increasing dryness in the SPEI, Z-index and PDSI series. The seasonal temperature series represent a broad European area, while the seasonal precipitation series show lower spatial correlations. A statistical attribution analysis conducted utilizing regression and wavelet techniques confirmed the influence of covariates related to volcanic activity (prompting temporary temperature decreases, especially during summer) and the North Atlantic Oscillation (influential in all seasons except summer) in the Czech climate reconstructions. Furthermore, components tied to multidecadal variabilities in the northern Atlantic and northern Pacific were identified in the temperature and precipitation series and in the drought indices, revealing notable shared oscillations, particularly at periods of approximately 70–100 years.

Geografie ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. 266-283 ◽  
Author(s):  
Petr Dobrovolný ◽  
Rudolf Brázdil ◽  
Oldřich Kotyza ◽  
Hubert Valášek

Extremely cold/mild winters (DJF) and extremely cold/warm summers (JJA) in the Czech Lands were derived from series of temperature indices based on documentary evidence (1500–1854) and from series of air temperatures measured at the Prague-Klementinum station (1771–2007) over the past 500 years. Altogether 24 cold winters, 23 mild winters, 18 cold summers and 21 warm summers emerged. Czech extremes were compared with the Central European temperature series and series of documentary-based temperature indices for the Low Countries, Germany and Switzerland. Analysis of composite sea level pressure fields confirms advection of cold air from the north-west (extremely cold summers) or from the east (extremely cold winters). Mild winters are related to warm airflow from the west or south-west and extremely warm summers to the influence of high pressure related to the Azores High. Spatial correlations of extremes for winters proved better than for summers. We demonstrate that documentary evidence explains temperature variability for winter better than it does for the other seasons.


2017 ◽  
Vol 30 (13) ◽  
pp. 4965-4981 ◽  
Author(s):  
James F. Booth ◽  
Young-Oh Kwon ◽  
Stanley Ko ◽  
R. Justin Small ◽  
Rym Msadek

To improve the understanding of storm tracks and western boundary current (WBC) interactions, surface storm tracks in 12 CMIP5 models are examined against ERA-Interim. All models capture an equatorward displacement toward the WBCs in the locations of the surface storm tracks’ maxima relative to those at 850 hPa. An estimated storm-track metric is developed to analyze the location of the surface storm track. It shows that the equatorward shift is influenced by both the lower-tropospheric instability and the baroclinicity. Basin-scale spatial correlations between models and ERA-Interim for the storm tracks, near-surface stability, SST gradient, and baroclinicity are calculated to test the ability of the GCMs’ match reanalysis. An intermodel comparison of the spatial correlations suggests that differences (relative to ERA-Interim) in the position of the storm track aloft have the strongest influence on differences in the surface storm-track position. However, in the North Atlantic, biases in the surface storm track north of the Gulf Stream are related to biases in the SST. An analysis of the strength of the storm tracks shows that most models generate a weaker storm track at the surface than 850 hPa, consistent with observations, although some outliers are found. A linear relationship exists among the models between storm-track amplitudes at 500 and 850 hPa, but not between 850 hPa and the surface. In total, the work reveals a dual role in forcing the surface storm track from aloft and from the ocean surface in CMIP5 models, with the atmosphere having the larger relative influence.


1886 ◽  
Vol 18 (11) ◽  
pp. 213-220
Author(s):  
Aug. R. Grote

Again, the genera Citheronia and Eacles are a South American element in our fauna, while the typical Attacinæ, such as Actias, probably belong to the Old World element in our fauna, together with all our Platypteryginœ. Among the Hawk Moths the genera Philampelus and Phlegethontius are of probable South American extraction, though represented now by certain strictly North American species. Mr. Robert Bunker, writing from Rochester, N. Y., records the fact that Philampelus Pandorus, going into chrysaiis Augnst 1, came out Sept. 10 as a moth, showing that in a warmer climate the species would become doublebrooded. And this is undoubtedly the case with many species the farther we go South, where insect activities are not interrupted so long and so strictly by the cold of winter. Since the continuance of the pupal condition is influenced by cold, a diminishing seasonal temperature for ages may have originally affected, if not induced, the transformations of insects as a whole. Butterflies and Moths which are single brooded in the North become double brooded in the South.


2017 ◽  
Vol 30 (1) ◽  
pp. 427-436 ◽  
Author(s):  
D. E. Harrison ◽  
Andrew M. Chiodi

El Niño and La Niña seasonal weather anomaly associations provide a useful basis for winter forecasting over the North American regions where they are sufficiently strong in amplitude and consistent in character from one event to another. When the associations during La Niña are different than El Niño, however, the obvious quasi-linear-statistical approach to modeling them has serious shortcomings. The linear approach of L’Heureux et al. is critiqued here based on observed land surface temperature and tropospheric circulation associations over North America. The La Niña associations are quite different in pattern from their El Niño counterparts. The El Niño associations dominate the statistics. This causes the linear approach to produce results that are inconsistent with the observed La Niña–averaged associations. Further, nearly all the useful North American associations have been contributed by the subset of El Niño and La Niña years that are identifiable by an outgoing longwave radiation (OLR) El Niño index and a distinct OLR La Niña index. The remaining “non-OLR events” exhibit winter weather anomalies with large event-to-event variability and contribute very little statistical utility to the composites. The result is that the linear analysis framework is sufficiently unable to fit the observations as to question its utility for studying La Niña and El Niño seasonal temperature and atmospheric circulation relationships. An OLR-event based approach that treats La Niña and El Niño separately is significantly more consistent with, and offers an improved statistical model for, the observed relationships.


2006 ◽  
Vol 134 (8) ◽  
pp. 2191-2207 ◽  
Author(s):  
Thomas Jung ◽  
Jan Barkmeijer

Abstract The sensitivity of the wintertime tropospheric circulation to changes in the strength of the Northern Hemisphere stratospheric polar vortex is studied using one of the latest versions of the ECMWF model. Three sets of experiments were carried out: one control integration and two integrations in which the strength of the stratospheric polar vortex has been gradually reduced and increased, respectively, during the course of the integration. The strength of the polar vortex is changed by applying a forcing to the model tendencies in the stratosphere only. The forcing has been obtained using the adjoint technique. It is shown that, in the ECMWF model, changes in the strength of the polar vortex in the middle and lower stratosphere have a significant and slightly delayed (on the order of days) impact on the tropospheric circulation. The tropospheric response shows some resemblance to the North Atlantic Oscillation (NAO), though the centers of action are slightly shifted toward the east compared to those of the NAO. Furthermore, a separate comparison of the response to a weak and strong vortex forcing suggests that to first order the tropospheric response is linear within a range of realistic stratospheric perturbations. From the results presented, it is argued that extended-range forecasts in the European area particularly benefit from the stratosphere–troposphere link.


2015 ◽  
Vol 11 (2) ◽  
pp. 755-803
Author(s):  
S. A. Mauget

Abstract. The Optimal Ranking Regime (ORR) method was used to identify 6–100 year time windows containing significant ranking sequences in 55 western US streamflow reconstructions, and reconstructions of the level of the Great Salt Lake and San Francisco Bay salinity during 1500–2007. The method's ability to identify optimally significant and non-overlapping runs of low and high rankings allows it to re-express a reconstruction time series as a simplified sequence of regime segments marking intra- to multi-decadal (IMD) periods of low or high streamflow, lake level, or salinity. Those ORR sequences, referred to here as Z lines, can be plotted to identify consistent regime patterns in the analysis of numerous reconstructions. The Z lines for the 57 reconstructions evaluated here show a common pattern of IMD cycles of drought and pluvial periods during the late 16th and 17th centuries, a relatively dormant period during the 18th century, and the reappearance of alternating dry and wet IMD periods during the 19th and early 20th centuries. Although this pattern suggests the possibility of similarly active and inactive oceanic modes in the North Pacific and North Atlantic, such centennial-scale patterns are not evident in the ORR analyses of reconstructed Pacific Decadal Oscillation (PDO), El Niño–Southern Oscillation, and North Atlantic seas-surface temperature variation. But given the inconsistency in the analyses of four PDO reconstructions the possible role of centennial-scale oceanic mechanisms is uncertain. In future research the ORR method might be applied to climate reconstructions around the Pacific Basin to try to resolve this uncertainty. Given its ability to compare regime patterns in climate reconstructions derived using different methods and proxies, the method may also be used in future research to evaluate long-term regional temperature reconstructions.


2016 ◽  
Author(s):  
Emmanuele Russo ◽  
Ulrich Cubasch

Abstract. The improvement in resolution of climate models is always been mentioned as one of the most important factors when investigating past climatic conditions especially in order to evaluate and compare the results against proxy data. In this paper we present for the first time a set of high resolution simulations for different time slices of mid-to-late Holocene performed over Europe using a Regional Climate Model. Through a validation against a new pollen-based climate reconstructions dataset, covering almost all of Europe, we test the model performances for paleoclimatic applications and investigate the response of temperature to variations in the seasonal cycle of insolation, with the aim of clarifying earlier debated uncertainties, giving physically plausible interpretations of both the pollen data and the model results. The results reinforce previous findings showing that summertime temperatures were driven mainly by changes in insolation and that the model is too sensitive to such changes over Southern Europe, resulting in drier and warmer conditions. In winter, instead, the model does not reproduce correctly the same amplitude of changes, even if it captures the main pattern of the pollen dataset over most of the domain for the time periods under investigation. Through the analysis of variations in atmospheric circulation we suggest that, even though in some areas the discrepancies between the two datasets are most likely due to high pollen uncertanties, in general the model seems to underestimate the changes in the amplitude of the North Atlantic Oscillation, overestimating the contribution of secondary modes of variability


Sign in / Sign up

Export Citation Format

Share Document