scholarly journals Maastrichtian-Rupelian paleoclimates in the southwest Pacific – a critical evaluation of biomarker paleothermometry and dinoflagellate cyst paleoecology at Ocean Drilling Program Site 1172

2021 ◽  
Author(s):  
Peter K. Bijl ◽  
Joost Frieling ◽  
Margot J. Cramwinckel ◽  
Christine Boschman ◽  
Appy Sluijs ◽  
...  

Abstract. Sea surface temperature (SST) reconstructions based on isoprenoid glycerol dialkyl glycerol tetraether (isoGDGT) distributions from the Eocene southwest (sw) Pacific Ocean are unequivocally warmer than can be reconciled with state-of-the-art fully coupled climate models. However, the SST signal preserved in sedimentary archives can be affected by contributions of additional isoGDGT sources. Methods now exist to identify and possibly correct for overprinting effects on the isoGDGT distribution in marine sediments. We here use the current proxy insights to assess the reliability of the isoGDGT-based SST signal in 69 newly analysed and 242 re-analysed sediments ODP Site 1172 (East Tasman Plateau, Australia) following state-of-the-art chromatographic techniques, in context of paleo-environmental and paleoclimatologic reconstructions based on dinoflagellate cysts. The resulting ~130 kyr-resolution Maastrichtian-Oligocene TEX86-based SST record confirms previous conclusions of anomalous warmth in the early Eocene sw Pacific and remarkably cool conditions during the mid-Paleocene. Dinocyst diversity and assemblages show a strong response to the local SST evolution, supporting the robustness of the TEX86 record. Soil-derived branched GDGTs stored in the same sediments are used to reconstruct mean annual air temperature (MAAT) of the nearby land using the MBT'5me proxy. MAAT is consistently lower than SST during the early Eocene, independent of the calibration chosen. General trends in SST and MAAT are similar, except for: 1) an enigmatic absence of MAAT rise during the Paleocene-Eocene Thermal Maximum and Middle Eocene Climatic Optimum, and 2) a subdued middle–late Eocene MAAT cooling relative to SST. Both dinocysts and GDGT signals suggest a mid-shelf depositional environment with strong river-runoff during the Paleocene-early Eocene, progressively becoming more marine thereafter. This trend reflects gradual drying and more pronounced wet/dry seasons in the northward drifting Australian hinterland, which may also explain the subdued middle Eocene MAAT cooling relative to that of SST. The overall correlation between dinocyst assemblages, marine biodiversity and SST changes suggests that temperature exerted a strong influence on the surface-water ecosystem, probably in part through sea level changes caused by steric effects. Finally, we find support for a potential temperature control on compositional changes of branched glycerol monoalkyl glycerol tetraethers (brGMGTs) in marine sediments. It is encouraging that a critical evaluation of the GDGT signals confirms the vast majority of the generated data is reliable. However, this also implies the high TEX86-based SSTs for the Eocene sw Pacific, and the systematic offset between absolute TEX86-based SST and MBT'5me-based MAAT estimates remain unexplained.

2021 ◽  
Vol 17 (6) ◽  
pp. 2393-2425
Author(s):  
Peter K. Bijl ◽  
Joost Frieling ◽  
Margot J. Cramwinckel ◽  
Christine Boschman ◽  
Appy Sluijs ◽  
...  

Abstract. Sea surface temperature (SST) reconstructions based on isoprenoid glycerol dialkyl glycerol tetraether (isoGDGT) distributions from the Eocene southwest (SW) Pacific Ocean are unequivocally warmer than can be reconciled with state-of-the-art fully coupled climate models. However, the SST signal preserved in sedimentary archives can be affected by contributions of additional isoGDGT sources. Methods now exist to identify and possibly correct for overprinting effects on the isoGDGT distribution in marine sediments. Here, we use the current proxy insights to (re-)assess the reliability of the isoGDGT-based SST signal in 69 newly analyzed and 242 reanalyzed sediments at Ocean Drilling Program (ODP) Site 1172 (East Tasman Plateau, Australia) following state-of-the-art chromatographic techniques. We compare our results with paleoenvironmental and paleoclimatologic reconstructions based on dinoflagellate cysts. The resulting ∼ 130 kyr resolution Maastrichtian–Oligocene SST record based on the TetraEther indeX of tetraethers with 86 carbon atoms (TEX86) confirms previous conclusions of anomalous warmth in the early Eocene SW Pacific and remarkably cool conditions during the mid-Paleocene. Dinocyst diversity and assemblages show a strong response to the local SST evolution, supporting the robustness of the TEX86 record. Soil-derived branched GDGTs stored in the same sediments are used to reconstruct mean annual air temperature (MAAT) of the nearby land using the Methylation index of Branched Tetraethers with 5-methyl bonds (MBT'5me) proxy. MAAT is consistently lower than SST during the early Eocene, independent of the calibration chosen. General trends in SST and MAAT are similar, except for (1) an enigmatic absence of MAAT rise during the Paleocene–Eocene Thermal Maximum and Middle Eocene Climatic Optimum, and (2) a subdued middle–late Eocene MAAT cooling relative to SST. Both dinocysts and GDGT signals suggest a mid-shelf depositional environment with strong river runoff during the Paleocene–early Eocene progressively becoming more marine thereafter. This trend reflects gradual subsidence and more pronounced wet/dry seasons in the northward-drifting Australian hinterland, which may also explain the subdued middle Eocene MAAT cooling relative to that of SST. The overall correlation between dinocyst assemblages, marine biodiversity and SST changes suggests that temperature exerted a strong influence on the surface-water ecosystem. Finally, we find support for a potential temperature control on compositional changes of branched glycerol monoalkyl glycerol tetraethers (brGMGTs) in marine sediments. It is encouraging that a critical evaluation of the GDGT signals confirms that most of the generated data are reliable. However, this also implies that the high TEX86-based SSTs for the Eocene SW Pacific and the systematic offset between absolute TEX86-based SST and MBT'5me-based MAAT estimates remain without definitive explanation.


2021 ◽  
Author(s):  
Peter Bijl ◽  
Joost Frieling ◽  
Margot J. Cramwinckel ◽  
Christine Boschman ◽  
Appy Sluijs ◽  
...  

<p>Sea surface temperature (SST) reconstructions based on isoprenoid glycerol dialkyl glycerol tetraether (isoGDGT) distributions from the Eocene southwest (sw) Pacific Ocean are unequivocally warmer than can be reconciled with state-of-the-art fully coupled climate models. However, the SST signal preserved in sedimentary archives can be obscured by contributions of additional isoGDGT sources. We here use current proxy insights to assess the reliability of the isoGDGT-based SST signal in 69 newly analysed and 242 re-analysed samples covering the Maastrichtian to Oligocene from ODP Site 1172 (East Tasman Plateau, Australia) following state-of-the-art chromatographic techniques. We then reinterpret the record in context of paleo-environmental and paleoclimatologic reconstructions based on dinoflagellate cysts. Our ~130 kyr-resolution SST record reaffirms previous reconstructions of anomalous warmth in the early Eocene sw Pacific and remarkably cool conditions during the mid-Paleocene. Dinocyst diversity and temperature-sensitive taxa show a strong response to the local SST evolution, supporting the robustness of the marine biomarker record.  In addition, the long-term isoGDGT and dinocyst records provide further support for an apparent temperature control on compositional changes of branched glycerol monoalkyl glycerol tetraethers (brGMGTs), recorded in the same samples.</p><p>Soil-derived branched GDGTs (brGDGTs) stored in the same sediments are used to reconstruct mean annual air temperature (MAAT) of the nearby land through the MBT’<sub>5me</sub> proxy. General trends in SST and MAAT are similar, except for 1) an enigmatic absence of MAAT rise during the Paleocene-Eocene Thermal Maximum and Middle Eocene Climatic Optimum, and 2) a subdued middle–late Eocene MAAT cooling relative to SST. Both dinocyst assemblages and brGDGT indices (the isomerization index) suggest a mid-shelf depositional environment with strong river-runoff during the Paleocene-early Eocene, becoming more open marine thereafter. This trend reflects gradual drying and more seasonal precipitation regime in the northward drifting Australian hinterland. The overall correlation between dinocyst assemblages, biodiversity and SST changes suggests that temperature and associated environmental changes exert a strong influence on the surface-water ecosystem.</p>


2021 ◽  
Author(s):  
◽  
Claire Louise Shepherd

<p>Earth’s climate underwent a long-term warming trend from the late Paleocene to early Eocene (~58–51 Ma), with global temperature reaching a sustained maximum during the Early Eocene Climatic Optimum (EECO; 53–50 Ma). Geochemical proxies indicate tropical or warm subtropical sea-surface temperature (SST) conditions in middle and high latitudes in the early Eocene, implying a very low latitudinal temperature gradient. This study investigates whether calcareous nannofossil assemblages in the southwest (SW) Pacific provide evidence of these conditions at middle latitudes in the early to middle Eocene, particularly during the EECO. Specifically, this study documents the biogeographic changes of warm- and cold-water nannofossil species along a paleolatitudinal transect through the EECO to track changes in water masses/ocean circulation at that time.  Early to middle Eocene calcareous nannofossil assemblages were examined from four sites along a latitudinal transect in the SW Pacific, extending from Lord Howe Rise in the north to Campbell Plateau in the south and spanning a paleolatitude of ~46–54°S. All of the sections studied in this project span nannofossil zones NP10–16 (Martini, 1971). The data indicate up to three regional unconformities through the sections: at mid-Waipara, Deep Sea Drilling Project (DSDP) Site 207 and 277, part or all of Zone NP10 (lower Waipawan) is missing; at Sites 207 and 277 a possible hiatus occurs within NP12 (upper Waipawan–lower Mangaorapan); and at all sites part or all of Zone NP15 (lower Bortonian) is missing. Results of this study indicate that nannofossil assemblages in the SW Pacific are more similar to floras at temperate to polar sites rather than those at tropical/subtropical sites. However, variations in the relative abundance of key species in the SW Pacific are broadly consistent with the trends seen in the geochemical proxy records: an increase in warm-water taxa coincided with the EECO, corroborating geochemical evidence for a temperature maximum in the SW Pacific during this interval.  The increase in the abundance and diversity of warm-water taxa and decrease in the abundance of cool-water taxa through the EECO supports previous suggestions that a warm-water mass (northward of the proto-Tasman Front) extended to ~55°S paleolatitude during this interval in response to enhanced poleward heat transport and intensification of the proto-East Australian Current. At the southernmost site, DSDP Site 277, a relatively short-lived influx of warm-water taxa at ~51 Ma suggests that warm waters expanded south at this time. However, greater diversity and abundance of warm-water taxa throughout the EECO at DSDP Site 207, suggests that the proto-East Australian Current exerted greater influence at this latitude for a longer duration than at Site 277. An increase in the abundance of cool-water taxa and decrease in diversity and abundance of warm-water taxa at all sites is recorded following the termination of the EECO. This corresponds with the contraction of the proto-Tasman Front due to weakened proto-East Australian Current flow and associated amplification of the proto-Ross Gyre.  Previous estimates of SSTs from geochemical proxies in the SW Pacific during the EECO indicate that there was virtually no latitudinal temperature gradient and temperatures were tropical to subtropical (>20°C). However, nannofossil data from this study indicate warm temperate conditions (~15–20°C) during the EECO, suggesting that a reduced latitudinal gradient was maintained through this interval, which is in agreement with climate models.</p>


2021 ◽  
Author(s):  
◽  
Claire Louise Shepherd

<p>Earth’s climate underwent a long-term warming trend from the late Paleocene to early Eocene (~58–51 Ma), with global temperature reaching a sustained maximum during the Early Eocene Climatic Optimum (EECO; 53–50 Ma). Geochemical proxies indicate tropical or warm subtropical sea-surface temperature (SST) conditions in middle and high latitudes in the early Eocene, implying a very low latitudinal temperature gradient. This study investigates whether calcareous nannofossil assemblages in the southwest (SW) Pacific provide evidence of these conditions at middle latitudes in the early to middle Eocene, particularly during the EECO. Specifically, this study documents the biogeographic changes of warm- and cold-water nannofossil species along a paleolatitudinal transect through the EECO to track changes in water masses/ocean circulation at that time.  Early to middle Eocene calcareous nannofossil assemblages were examined from four sites along a latitudinal transect in the SW Pacific, extending from Lord Howe Rise in the north to Campbell Plateau in the south and spanning a paleolatitude of ~46–54°S. All of the sections studied in this project span nannofossil zones NP10–16 (Martini, 1971). The data indicate up to three regional unconformities through the sections: at mid-Waipara, Deep Sea Drilling Project (DSDP) Site 207 and 277, part or all of Zone NP10 (lower Waipawan) is missing; at Sites 207 and 277 a possible hiatus occurs within NP12 (upper Waipawan–lower Mangaorapan); and at all sites part or all of Zone NP15 (lower Bortonian) is missing. Results of this study indicate that nannofossil assemblages in the SW Pacific are more similar to floras at temperate to polar sites rather than those at tropical/subtropical sites. However, variations in the relative abundance of key species in the SW Pacific are broadly consistent with the trends seen in the geochemical proxy records: an increase in warm-water taxa coincided with the EECO, corroborating geochemical evidence for a temperature maximum in the SW Pacific during this interval.  The increase in the abundance and diversity of warm-water taxa and decrease in the abundance of cool-water taxa through the EECO supports previous suggestions that a warm-water mass (northward of the proto-Tasman Front) extended to ~55°S paleolatitude during this interval in response to enhanced poleward heat transport and intensification of the proto-East Australian Current. At the southernmost site, DSDP Site 277, a relatively short-lived influx of warm-water taxa at ~51 Ma suggests that warm waters expanded south at this time. However, greater diversity and abundance of warm-water taxa throughout the EECO at DSDP Site 207, suggests that the proto-East Australian Current exerted greater influence at this latitude for a longer duration than at Site 277. An increase in the abundance of cool-water taxa and decrease in diversity and abundance of warm-water taxa at all sites is recorded following the termination of the EECO. This corresponds with the contraction of the proto-Tasman Front due to weakened proto-East Australian Current flow and associated amplification of the proto-Ross Gyre.  Previous estimates of SSTs from geochemical proxies in the SW Pacific during the EECO indicate that there was virtually no latitudinal temperature gradient and temperatures were tropical to subtropical (>20°C). However, nannofossil data from this study indicate warm temperate conditions (~15–20°C) during the EECO, suggesting that a reduced latitudinal gradient was maintained through this interval, which is in agreement with climate models.</p>


1997 ◽  
Vol 34 (10) ◽  
pp. 1366-1378 ◽  
Author(s):  
Paul B. O'Sullivan ◽  
Larry S. Lane

Apatite fission-track data from 16 sedimentary and crystalline rock samples indicate rapid regional Early Eocene denudation within the onshore Beaufort–Mackenzie region of northwestern Canada. Rocks exposed in the area of the Big Fish River, Northwest Territories, cooled rapidly from paleotemperatures of >80–110 °C to <6 0°C at ca. 56 ± 2 Ma, probably in response to kilometre-scale denudation associated with regional structuring. The data suggest the region experienced a geothermal gradient of ~28 °C/km prior to rapid cooling, with ~2.7 km of section having been removed from the top of the exposed section in the Moose Channel Formation and ~3.8 km from the top of the exposed Cuesta Creek Member. Farther to the west, rocks exposed in the headwaters of the Blow River in the Barn Mountains, Yukon Territories, were exposed to paleotemperatures above 110 °C in the Late Paleocene prior to rapid cooling from these elevated paleotemperatures due to kilometre-scale denudation at ca. 56 ± 2 Ma. Exposure of these samples at the surface today requires that a minimum of ~3.8 km of denudation occurred since they began cooling below ~110 °C. The apatite analyses indicate that rocks exposed in the northern Yukon and Northwest Territories experienced rapid cooling during the Early Eocene in response to kilometre-scale denudation, associated with early Tertiary folding and thrusting in the northern Cordillera. Early Eocene cooling–uplift ages for onshore sections are slightly older than the Middle Eocene ages previously documented for the adjacent offshore foldbelt and suggest that the deformation progressed toward the foreland of the foldbelt through time.


2015 ◽  
Vol 42 ◽  
Author(s):  
Yaroslav Kuzmin

Recent developments related to the emergence of pottery in East Asia and neighbouring regions are presented. According to a critical evaluation of the existing evidence, the oldest centres with pottery in East Asia are situated in South China (dated to c. 18 000 calBP), the Japanese Islands (c. 16 700 calBP), and the Russian Far East (c. 15 900 calBP). It is most likely that pottery-making appeared in these regions independently of each other. In Siberia, the earliest pottery now known isfrom the Transbaikal region (dated to c. 14 000 calBP). However, it did not influence the more westerly parts of Siberia in terms of the origin and spread of pottery-making.


2018 ◽  
Vol 37 (1) ◽  
pp. 317-339 ◽  
Author(s):  
Joost Frieling ◽  
Emiel P. Huurdeman ◽  
Charlotte C. M. Rem ◽  
Timme H. Donders ◽  
Jörg Pross ◽  
...  

Abstract. Detailed, stratigraphically well-constrained environmental reconstructions are available for Paleocene and Eocene strata at a range of sites in the southwest Pacific Ocean (New Zealand and East Tasman Plateau; ETP) and Integrated Ocean Discovery Program (IODP) Site U1356 in the south of the Australo-Antarctic Gulf (AAG). These reconstructions have revealed a large discrepancy between temperature proxy data and climate models in this region, suggesting a crucial error in model, proxy data or both. To resolve the origin of this discrepancy, detailed reconstructions are needed from both sides of the Tasmanian Gateway. Paleocene–Eocene sedimentary archives from the west of the Tasmanian Gateway have unfortunately remained scarce (only IODP Site U1356), and no well-dated successions are available for the northern sector of the AAG. Here we present new stratigraphic data for upper Paleocene and lower Eocene strata from the Otway Basin, southeast Australia, on the (north)west side of the Tasmanian Gateway. We analyzed sediments recovered from exploration drilling (Latrobe-1 drill core) and outcrop sampling (Point Margaret) and performed high-resolution carbon isotope geochemistry of bulk organic matter and dinoflagellate cyst (dinocyst) and pollen biostratigraphy on sediments from the regional lithostratigraphic units, including the Pebble Point Formation, Pember Mudstone and Dilwyn Formation. Pollen and dinocyst assemblages are assigned to previously established Australian pollen and dinocyst zonations and tied to available zonations for the SW Pacific. Based on our dinocyst stratigraphy and previously published planktic foraminifer biostratigraphy, the Pebble Point Formation at Point Margaret is dated to the latest Paleocene. The globally synchronous negative carbon isotope excursion that marks the Paleocene–Eocene boundary is identified within the top part of the Pember Mudstone in the Latrobe-1 borehole and at Point Margaret. However, the high abundances of the dinocyst Apectodinium prior to this negative carbon isotope excursion prohibit a direct correlation of this regional bio-event with the quasi-global Apectodinium acme at the Paleocene–Eocene Thermal Maximum (PETM; 56 Ma). Therefore, the first occurrence of the pollen species Spinizonocolpites prominatus and the dinocyst species Florentinia reichartii are here designated as regional markers for the PETM. In the Latrobe-1 drill core, dinocyst biostratigraphy further indicates that the early Eocene (∼ 56–51 Ma) sediments are truncated by a ∼ 10 Myr long hiatus overlain by middle Eocene (∼ 40 Ma) strata. These sedimentary archives from southeast Australia may prove key in resolving the model–data discrepancy in this region, and the new stratigraphic data presented here allow for detailed comparisons between paleoclimate records on both sides of the Tasmanian Gateway.


2018 ◽  
Vol 115 (18) ◽  
pp. 4577-4582 ◽  
Author(s):  
Kathleen A. Schiro ◽  
Fiaz Ahmed ◽  
Scott E. Giangrande ◽  
J. David Neelin

A substantial fraction of precipitation is associated with mesoscale convective systems (MCSs), which are currently poorly represented in climate models. Convective parameterizations are highly sensitive to the assumptions of an entraining plume model, in which high equivalent potential temperature air from the boundary layer is modified via turbulent entrainment. Here we show, using multiinstrument evidence from the Green Ocean Amazon field campaign (2014–2015; GoAmazon2014/5), that an empirically constrained weighting for inflow of environmental air based on radar wind profiler estimates of vertical velocity and mass flux yields a strong relationship between resulting buoyancy measures and precipitation statistics. This deep-inflow weighting has no free parameter for entrainment in the conventional sense, but to a leading approximation is simply a statement of the geometry of the inflow. The structure further suggests the weighting could consistently apply even for coherent inflow structures noted in field campaign studies for MCSs over tropical oceans. For radar precipitation retrievals averaged over climate model grid scales at the GoAmazon2014/5 site, the use of deep-inflow mixing yields a sharp increase in the probability and magnitude of precipitation with increasing buoyancy. Furthermore, this applies for both mesoscale and smaller-scale convection. Results from reanalysis and satellite data show that this holds more generally: Deep-inflow mixing yields a strong precipitation–buoyancy relation across the tropics. Deep-inflow mixing may thus circumvent inadequacies of current parameterizations while helping to bridge the gap toward representing mesoscale convection in climate models.


Sign in / Sign up

Export Citation Format

Share Document