scholarly journals Late Holocene environmental reconstructions and the implications on flood events, typhoon patterns, and agriculture activities in NE Taiwan

2014 ◽  
Vol 10 (3) ◽  
pp. 1977-2009 ◽  
Author(s):  
L.-C. Wang ◽  
H. Behling ◽  
T.-Q. Lee ◽  
H.-C. Li ◽  
C.-A. Huh ◽  
...  

Abstract. In this study, we reconstructed the paleoenvironmental changes from a sediment archive of the floodplain lake in Ilan Plain of NE Taiwan on multi-decadal resolution for the last ca. 1900 years. On the basis of pollen and diatom records, we evaluated the record of past vegetation, floods, typhoons and agriculture activities of this area, which is sensitive to the hydrological conditions of the West Pacific. High sedimentation rates with low microfossil preservations reflected multiple flood events and humid climatic conditions during 100–1400 AD. A shortly interrupted dry phase can be found during 940–1010 AD. The driest phase corresponds to the Little Ice Age phase 1 (LIA1, 1400–1620 AD) with less disturbance by flood events, which enhanced the occurrence of wetlands (Cyperaceae) and diatom depositions. Humid phases with frequent typhoons are inferred by high percentages of Lagerstroemia and high ratios of planktonic/benthic diatoms, respectively, during 500–700 AD and Little Ice Age phase 2 (LIA2, 1630–1850 AD). The occurrences of cultivated Poaceae (Oryza) during 1250–1300 AD and the last ~400 years, reflect agriculture activities, which seems to implicate strongly with the environmental stability. Finally, we found flood events which dominated during the El Niño-like stage, but dry events as well as frequent typhoon events happened during the La Niña-like stage. After comparing our results with the reconstructed proxy for tropical hydrological conditions, we suggested that the local hydrology in coastal East Asia were strongly affected by the typhoon-triggered heavy rainfalls which were influenced by the variation of global temperature, expansion of the Pacific warm pool and intensification of ENSO events.

2014 ◽  
Vol 10 (5) ◽  
pp. 1857-1869 ◽  
Author(s):  
L.-C. Wang ◽  
H. Behling ◽  
T.-Q. Lee ◽  
H.-C. Li ◽  
C.-A. Huh ◽  
...  

Abstract. We reconstructed paleoenvironmental changes from a sediment archive of a lake in the floodplain of the Ilan Plain of NE Taiwan on multi-decadal resolution for the last ca. 1900 years. On the basis of pollen and diatom records, we evaluated past floods, typhoons, and agricultural activities in this area which are sensitive to the hydrological conditions in the western Pacific. Considering the high sedimentation rates with low microfossil preservations in our sedimentary record, multiple flood events were. identified during the period AD 100–1400. During the Little Ice Age phase 1 (LIA 1 – AD 1400–1620), the abundant occurrences of wetland plant (Cyperaceae) and diatom frustules imply less flood events under stable climate conditions in this period. Between AD 500 and 700 and the Little Ice Age phase 2 (LIA 2 – AD 1630–1850), the frequent typhoons were inferred by coarse sediments and planktonic diatoms, which represented more dynamical climate conditions than in the LIA 1. By comparing our results with the reconstructed changes in tropical hydrological conditions, we suggested that the local hydrology in NE Taiwan is strongly influenced by typhoon-triggered heavy rainfalls, which could be influenced by the variation of global temperature, the expansion of the Pacific warm pool, and the intensification of El Niño–Southern Oscillation (ENSO) events.


The Holocene ◽  
2018 ◽  
Vol 28 (8) ◽  
pp. 1266-1275 ◽  
Author(s):  
Kangkang Li ◽  
Xiaoguang Qin ◽  
Lei Zhang ◽  
Zhaoyan Gu ◽  
Bing Xu ◽  
...  

Human activity on arid lands has been related to oases evolution. The ancient Loulan, an important transportation hub of the ancient Silk Road, developed on an ancient oasis on the west bank of the lake Lop Nur in Xinjiang, China. Previous studies and historical documents suggest that the region has experienced dramatic natural environmental and human activity–related changes over time, transitioning from a particularly prosperous oasis to a depopulated zone with harsh environment after about 1500 a BP (before present, where present = AD 1950). Based on systematic radiocarbon (14C) dating for natural plant remains and archeological sites in the Loulan area, it was revealed that the region re-experienced oasis environment from 1260 to 1450 cal. AD, corresponding to the Yuan–Ming Dynasties, which is the climate transition stage from the ‘Medieval Warm Period’ to the ‘Little Ice Age’, encompassing a series of pulse-like flood events which cannot be identified from lacustrine deposition due to the limits of sampling resolution and dating. It was found that humans re-occupied the Loulan area and built canals to irrigate farmlands during the period. The more habitable hydrological conditions that resulted from these environmental changes present one major reason for the re-emergence of human activities in the Loulan area.


2020 ◽  
Vol 13 (12) ◽  
pp. 806-811
Author(s):  
James F. Bramante ◽  
Murray R. Ford ◽  
Paul S. Kench ◽  
Andrew D. Ashton ◽  
Michael R. Toomey ◽  
...  

ISRN Geology ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Elhoucine Essefi ◽  
Jamel Touir ◽  
Mohamed Ali Tagorti ◽  
Chokri Yaich

This paper aimed to study the record of the climatic variability during the last two millennia within the sebkha of Dkhila. Six climatic stages were recognized along the 104 cm core: the Warming Present (WP), the Late Little Ice Age (Late LIA), the Early Little Ice Age (ELIA), the Medieval Climatic Anomaly (MCA), the Dark Age (DA), and the Roman Warm Period (RWP). The WP stretches along the uppermost 1 cm with a high grey scale as sign of a dry climate. The Late LIA is located between 1 cm and 6 cm. The ELIA is located between 6 cm and 40 cm. The MCA spanning from 40 cm to 72 cm is marked by a sharp increase of the GS revealing a wet period. The DA appears along the part between 72 cm and 84 cm; a shift from light to dark sediments is recorded. The RWP appears between 84 cm and 104 cm. Based on the grain size distribution, two low frequency cycles were identified indicating radical global changes of climatic conditions, the differential tectonics, and the groundwater fluctuations. On the other hand, high frequency cycles indicate local modifications of the climatic conditions.


2012 ◽  
Vol 5 (2) ◽  
pp. 421
Author(s):  
António Sousa Pedrosa

Resumo   De entre os  factores que tiveram maior influência na evolução do relevo de Portugal no decurso final do Quaternário é incontestável que o frio e os processos que lhe estão associados tiveram um papel muito importante na modelação das formas de relevo. Neste trabalho procuraremos fazer uma síntese dos principais aspectos da evolução das vertentes relacionados com os frio, inferir através dos vestígios que chegaram até ao nossos dias quais as condições morfo-climáticas em que ocorreram e quais os processos que lhes estavam encontravam associados. Realçamos assim o papel da acção dos glaciares nas áreas onde ocorreram assim como a importância dos processos periglaciares na evolução das vertentes. O período tardiglaciar também se mostrou marcante na dinâmica de vertentes tendo mobilizado e remobilizado muito material nas vertentes através de solifluxões generalizadas levando muitas delas à sua regularização. O período conhecido como a pequena idade do gelo também deixou as suas marcas na dinâmica das vertentes às quais se associam as escombreiras de gravidade. Por fim enfatizamos um pouco o papel do frio na actual morfodinâmica de vertentes no Norte de Centro de Portugal.   Palavras-chave: Norte de Portugal; Montanhas, depósitos glaciares, depósitos periglaciares, dinâmica de vertentes Summary   Among the factors that most influenced the evolution of the relief of Portugal during the late Quaternary is incontestable that the cold and the processes associated with it had a very important role in modeling the forms of relief. In this paper, we will try to summarize the importance that the cold had on the evolution of slopes, inferred through the vestiges that have come down to our day, which morpho-climatic conditions in which they occur, and also what processes if they were associated with. Thus enhancing the role of action in areas where glaciers have occurred and the importance of periglacial processes in the evolution of the slopes. In tardiglaciar the dynamics of slopes was very active and mobilized a lot of material through the process of solifluction regularized many of them. The period known as the Little Ice Age has also left its mark on the dynamic slopes which relate to tailings heaps of gravity. Finally we emphasize the role of cold in the current slopes of morphodynamics in north and central Portugal.   Keywords: North of Portugal; mountains, glacial deposits, periglacial deposits, morphodynamics of slopes 


Geosciences ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 272
Author(s):  
Stephanie Suzanne Weidemann ◽  
Jorge Arigony-Neto ◽  
Ricardo Jaña ◽  
Guilherme Netto ◽  
Inti Gonzalez ◽  
...  

The Cordillera Darwin Icefield loses mass at a similar rate as the Northern and Southern Patagonian Icefields, showing contrasting individual glacier responses, particularly between the north-facing and south-facing glaciers, which are subject to changing climate conditions. Detailed investigations of climatic mass balance processes on recent glacier behavior are not available for glaciers of the Cordillera Darwin Icefield and surrounding icefields. We therefore applied the coupled snow and ice energy and mass balance model in Python (COSIPY) to assess recent surface energy and mass balance variability for the Schiaparelli Glacier at the Monte Sarmiento Massif. We further used COSIPY to simulate steady-state glacier conditions during the Little Ice Age using information of moraine systems and glacier areal extent. The model is driven by downscaled 6-hourly atmospheric data and high resolution precipitation fields, obtained by using an analytical orographic precipitation model. Precipitation and air temperature offsets to present-day climate were considered to reconstruct climatic conditions during the Little Ice Age. A glacier-wide mean annual climatic mass balance of −1.8 ± 0.36 m w.e. a − 1 was simulated between between April 2000 and March 2017. An air temperature decrease between −0.9 ° C and −1.7 ° C in combination with a precipitation offset of up to +60% to recent climate conditions is necessary to simulate steady-state conditions for Schiaparelli Glacier in 1870.


2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Elhoucine Essefi ◽  
Hayet Ben Jmaa ◽  
Jamel Touir ◽  
Mohamed Ali Tagortig ◽  
Chokri Yaicha

AbstractThis paper covers work intended to study the interplay of sedimentary dynamics and climatic variability over the last two millennia within Tunisia’s sebkha Souassi. Based on the Visual Core Description, and magnetic susceptibility, we date the core from sebkha Souassi to the last two millennia. Genetic grain-size distribution then provided a basis for the identification of six climatic stages, i.e. the Warming Present (WP), the Late Little Ice Age (Late LIA), the Early Little Ice Age (ELIA), the Medieval Climatic Anomaly (MCA), the Dark Ages (DA), and the Roman Warm Period (RWP). The WP stretches across the uppermost 3 cm, with a high grey scale indicating a dry climate. The Late LIA is located between 3 and 7 cm, and the ELIA between 7 and 28 cm. Intermediate values for GS indicate that this stage may be classified as moderate. The MCA spanning from 28 to 40 cm is marked by a sharp decrease in GS indicative of a wet period. The DA appear along the part between 40 and 79 cm, a shift from light to dark sediments being recorded. The RWP in turn appears between 79 and 114 cm. Based on the grain-size distribution, two low-frequency cycles were identified, indicating radical global changes in climatic conditions, differential tectonics and groundwater fluctuations. High-frequency cycles in turn attest to local modifications of climatic conditions.


Coral Reefs ◽  
2014 ◽  
Vol 33 (3) ◽  
pp. 719-731 ◽  
Author(s):  
Michael C. Osborne ◽  
Robert B. Dunbar ◽  
David A. Mucciarone ◽  
Ellen Druffel ◽  
Joan-Albert Sanchez-Cabeza

2020 ◽  
Author(s):  
Bethan Davies ◽  

<p>We present PATICE, a GIS database of Patagonian glacial geomorphology and recalibrated chronostratigraphic data. PATICE includes 58,823 landforms and 1,669 ages, and extends from 38°S to 55°S in southern South America. We use these data to generate new empirical reconstructions of the Patagonian Ice Sheet (PIS) and subsequent ice masses and ice-dammed palaeolakes at 35 ka, 30 ka, 25 ka, 20 ka, 15 ka, 13 ka (synchronous with the Antarctic Cold Reversal), 10 ka, 5 ka, 0.2 ka (synchronous with the “Little Ice Age”) and 2011 AD. At 35 ka, the PIS covered of 492.6 x10<sup>3 </sup>km<sup>2</sup>, had a sea level equivalent of ~1,496 mm, was 350 km wide and 2090 km long, and was grounded on the Pacific continental shelf edge. Outlet glacier lobes remained topographically confined and the largest generated the suites of subglacial streamlined bedforms characteristic of ice streams. The PIS reached its maximum extent at 33 – 28 ka from 38°S to 48°S, and earlier, around 47 ka from 48°S southwards. Net retreat from maximum positions began by 25 ka, with ice-marginal stabilisation at 21 – 18 ka, followed by rapid deglaciation. By 15 ka, the PIS had separated into disparate ice masses, draining into large ice-dammed lakes along the eastern margin, which strongly influenced rates of recession. Glacial readvances or stabilisations occurred at 14 – 13 ka, 11 ka, 5 – 6 ka, 1 – 2 ka, and 0.2 ka. We suggest that 20<sup>th</sup> century glacial recession is occurring faster than at any time documented during the Holocene. </p>


2006 ◽  
Vol 52 (176) ◽  
pp. 110-118 ◽  
Author(s):  
Antoine Rabatel ◽  
Abraham Machaca ◽  
Bernard Francou ◽  
Vincent Jomelli

AbstractCerro Charquini, Bolivia (Cordillera Real, 5392 ma.s.l.) was selected as a site to reconstruct glacier recession since the maximum of the Little Ice Age (LIA) in the central Andes. Five glaciers, located on differently exposed slopes, present comprehensive and well-preserved morainic systems attributed to former centuries. The moraines were dated by lichenometry and show a consistent organization on the different slopes. The past geometry of the glaciers was reconstructed using ground topography and aerophotogrammetry. Lichenometric dating shows that the LIA maximum occurred in the second half of the 17th century, after which the glaciers have receded nearly continuously. Over the last decades of the 20th century (1983–97), recession rates increased by a factor of four. On the northern and western slopes, glaciers receded more than on the southern and eastern slopes (by 78% and 65% of their LIA maximum area, respectively). The mean equilibrium-line altitude (ELA) rose by about 160 m between the LIA maximum and 1997. Recession rates were analysed in terms of climatic signal, suggesting that glacier recession since the LIA maximum was mainly due to a change in precipitation and that the 19th century may have been drier. For the 20th century, a temperature rise of about 0.6°C appears to be the main cause of glacier recession. Recent climatic conditions from 1983 to 1997 correspond to a mass deficit of about 1.36m w.e.a–1. If such conditions persist, the small glaciers below 5300ma.s.l. in the Cordillera Real should disappear completely in the near future.


Sign in / Sign up

Export Citation Format

Share Document