scholarly journals Holocene vegetation and biomass changes on the Tibetan Plateau – a model-pollen data comparison

2011 ◽  
Vol 7 (2) ◽  
pp. 1073-1111
Author(s):  
A. Dallmeyer ◽  
M. Claussen ◽  
U. Herzschuh ◽  
N. Fischer

Abstract. Results of a transient numerical experiment, performed in a coupled atmosphere-ocean-vegetation model with orbital forcing alone, are compared to pollen-based vegetation reconstructions from four representative sites on the Tibetan Plateau, covering the last 6000 years. Causes of the vegetation change and consequences for the biomass storage are analysed. In general, simulated and reconstructed vegetation trends at each site are in good agreement. Both methods reveal a general retreat of the biomass-rich vegetation that is particularly manifested in a strong decrease of forests. However, model and reconstructions differ with regard to the climatic factors causing this vegetation change. The reconstructions primarily identify decreasing summer monsoon precipitation as the responsible mechanism for the vegetation shift. In the model, the land cover change originates from differences in near-surface air temperature arising out of orbitally-induced insolation changes. According to the model results, the averaged forest fraction on the Plateau is shrinking by almost one-third from mid-Holocene (41.4%) to present-day (28.3%). Shrubs, whose fraction is quadrupled at present-day (12.3%), replace most of this forest. Gras fraction increases from 38.9% during the mid-Holocene to 42.3% at present-day. This land cover change results in a decrease of living biomass by 0.62 kgC m−2. Total biomass on the Tibetan Plateau decreases by 1.9 kgC m−2, i.e. approx. 6.64 PgC are released due to the natural land cover change.

2011 ◽  
Vol 7 (3) ◽  
pp. 881-901 ◽  
Author(s):  
A. Dallmeyer ◽  
M. Claussen ◽  
U. Herzschuh ◽  
N. Fischer

Abstract. Results of a transient numerical experiment performed in a coupled atmosphere-ocean-vegetation model with orbital forcing alone are compared to pollen-based vegetation reconstructions covering the last 6000 yr from four representative sites on the Tibetan Plateau. Causes of the vegetation change and consequences of the biomass storage are analysed. In general, simulated and reconstructed vegetation trends at each site are in good agreement. Both methods reveal a general retreat of the biomass-rich vegetation that is particularly manifested in a strong decrease of forests. However, model and reconstructions often differ with regard to the climatic factors causing the vegetation change at each site. The reconstructions primarily identify decreasing summer monsoon precipitation and changes in the temperature of the warm season as the responsible mechanisms for the vegetation shift. In the model, the land cover change mainly originates from differences in warm/cold seasonal temperatures and only to a lesser extent from precipitation changes. According to the model results, the averaged forest fraction on the Plateau shrinks by almost one-third from mid-Holocene (41.4 %) to present-day (28.3 %). Shrubs, whose fraction is quadrupled at present-day (12.3 %), replace most of this forest. Grass fraction increases from 38.1 % during the mid-Holocene to 42.3 % at present-day. This land cover change results in a decrease of living biomass by 0.62 kgC m−2. Total biomass on the Tibetan Plateau decreases by 1.9 kgC m−2, i.e. approx. 6.64 PgC are released due to the natural land cover change.


2006 ◽  
Vol 19 (12) ◽  
pp. 2995-3003 ◽  
Author(s):  
Yuichiro Oku ◽  
Hirohiko Ishikawa ◽  
Shigenori Haginoya ◽  
Yaoming Ma

Abstract The diurnal, seasonal, and interannual variations in land surface temperature (LST) on the Tibetan Plateau from 1996 to 2002 are analyzed using the hourly LST dataset obtained by Japanese Geostationary Meteorological Satellite 5 (GMS-5) observations. Comparing LST retrieved from GMS-5 with independent precipitation amount data demonstrates the consistent and complementary relationship between them. The results indicate an increase in the LST over this period. The daily minimum has risen faster than the daily maximum, resulting in a narrowing of the diurnal range of LST. This is in agreement with the observed trends in both global and plateau near-surface air temperature. Since the near-surface air temperature is mainly controlled by LST, this result ensures a warming trend in near-surface air temperature.


2020 ◽  
Vol 21 (11) ◽  
pp. 2523-2536
Author(s):  
Lingjing Zhu ◽  
Jiming Jin ◽  
Yimin Liu

AbstractIn this study, we investigated the effects of lakes in the Tibetan Plateau (TP) on diurnal variations of local climate and their seasonal changes by using the Weather Research and Forecasting (WRF) Model coupled with a one-dimensional physically based lake model. We conducted WRF simulations for the TP over 2000–10, and the model showed excellent performance in simulating near-surface air temperature, precipitation, lake surface temperature, and lake-region precipitation when compared to observations. We carried out additional WRF simulations where all the TP lakes were replaced with the nearest land-use types. The differences between these two sets of simulations were analyzed to quantify the effects of the TP lakes on the local climate. Our results indicate that the strongest lake-induced cooling occurred during the spring daytime, while the most significant warming occurred during the fall nighttime. The cooling and warming effects of the lakes further inhibited precipitation during summer afternoons and evenings and motivated it during fall early mornings, respectively. This study lays a solid foundation for further exploration of the role of TP lakes in climate systems at different time scales.


2021 ◽  
Author(s):  
Lei Zhang ◽  
Yinlong Xu ◽  
Chunchun Meng ◽  
Yuncheng Zhao ◽  
Changgui Wang

Abstract The frequency and magnitude of global warming events varies greatly across different regions and countries. The climatic diversity for China and future warming features are projected across twelve climatic zones based on the ensemble of the five well-performing high resolution downscaled climate models for each zone. There are warming patterns for the mean near surface air temperature (Tm), maximum near surface air temperature (Tmax), minimum near surface air temperature (Tmin) as well as heat stress and frost events. Under RCP4.5 and RCP8.5 scenarios, the three indices (i.e., Tm, Tmax and Tmin) countrywide are likely to increase at respective rates of 0.30-0.31 and 0.64-0.67 oC per decade. The extent of freezing-event extent (FE) are projected to decrease at a rate of -1912 and -4442 day·km2 per decade while the extent of heat-stress event (HE) increase at 1116 and 3557 day·km2 per decade. A higher increment in temperatures as well as a decreasing trend in the diurnal temperature range (DTR) and frost days and FE are present on the Tibetan Plateau and northern China including Xinjiang, Northeast China, the eastern part of northwest China, Inner Mongolia and North China. These trends are opposite to those projected for southern China including Huanghuai, Jianghuai, Jianghan, the south Yangzi River, South China and Southwestern China. The warming occur faster in the current colder zones (northern China and the Tibetan Plateau) while heat stress is more intense and severe in Jianghuai, Jianghan, the south Yangzi River, South China and Xinjiang. These potential changes indicate that adaption and mitigation strategies are necessary in response to future warming.


2021 ◽  
Author(s):  
Ning Li ◽  
Lan Cuo ◽  
Yongxin Zhang

Abstract Changes in the freeze–thaw cycles of shallow soil have important consequences for surface and subsurface hydrology, land–atmosphere energy and moisture interaction, carbon exchange, and ecosystem diversity and productivity. This work examines the shallow soil freeze–thaw cycle on the Tibetan Plateau (TP) using in–situ soil temperature observations in 0–20 cm soil layer during July 1982 – June 2017. The domain and layer averaged beginning frozen day is November 18 and delays by 2.2 days per decade; the ending frozen day is March 9 and advances by 3.2 days per decade; the number of frozen days is 109 and shortens by 5.2 days per decade. Altitude and latitude combined could explain the spatial patterns of annual mean freeze–thaw status well. Stations located near 0–ºC contour line experienced dramatic changes in freeze–thaw cycles as seen from subtropical mountain coniferous forest in the southern TP. Soil completely freezes from surface to 20–cm depth in 15 days while completely thaws in 10 days on average. Near–surface soil displays more pronounced changes than deeper soil. Surface air temperature strongly influences the shallow soil freeze – thaw status but snow exerts limited effects. Different thresholds in freeze–thaw status definition lead to differences in the shallow soil freeze–thaw status and multiple–consecutive–day approach appears to be more robust and reliable. Gridded soil temperature products could resolve the spatial pattern of the observed shallow soil freeze–thaw status to some extent but further improvement is needed.


Author(s):  
Yixin Zhang ◽  
Guoce Xu ◽  
Peng Li ◽  
Zhanbin Li ◽  
Yun Wang ◽  
...  

As the “roof of the world”, the Tibetan Plateau (TP) is a unique geographical unit on Earth. In recent years, vegetation has gradually become a key factor reflecting the ecosystem since it is sensitive to ecological changes especially in arid and semi-arid areas. Based on the normalized difference vegetation index (NDVI) dataset of TP from 2000 to 2015, this study analyzed the characteristics of vegetation variation and the correlation between vegetation change and climatic factors at different time scales, based on a Mann–Kendall trend analyses, the Hurst exponent, and the Pettitt change-point test. The results showed that the vegetation fractional coverage (VFC) generally increased in the past 16 years, with 60.3% of the TP experiencing an increase, of which significant (p < 0.05) increases accounted for 28.79% and were mainly distributed in the north of the TP. Temperature had the largest response with the VFC on the seasonal scale. During the growing season, the correlation between precipitation and sunshine duration with VFC was high (p < 0.05). The change-points of the VFC were mainly distributed in the north of the TP during 2007–2009. Slope and elevation had an impact on the VFC; the areas with large vegetation change are mainly distributed in slopes <20° and elevation of 3000–5000 m. For elevation above 3000–4000 m, the response of the VFC to precipitation and temperature was the strongest. This study provided important information for ecological environment protection and ecosystem degradation on the Tibetan Plateau.


2020 ◽  
Vol 12 (11) ◽  
pp. 1722
Author(s):  
Mingxi Zhang ◽  
Bin Wang ◽  
James Cleverly ◽  
De Li Liu ◽  
Puyu Feng ◽  
...  

The Tibetan Plateau has been undergoing accelerated warming over recent decades, and is considered an indicator for broader global warming phenomena. However, our understanding of warming rates with elevation in complex mountain regions is incomplete. The most serious concern is the lack of high-quality near-surface air temperature (Tair) datasets in these areas. To address this knowledge gap, we developed an automated mapping framework for the estimation of seamless daily minimum and maximum Land Surface Temperatures (LSTs) for the Tibetan Plateau from the existing MODIS LST products for a long period of time (i.e., 2002–present). Specific machine learning methods were developed and linked with target-oriented validation and then applied to convert LST to Tair. Spatial variables in retrieving Tair, such as solar radiation and vegetation indices, were used in estimation of Tair, whereas MODIS LST products were mainly focused on temporal variation in surface air temperature. We validated our process using independent Tair products, revealing more reliable estimates on Tair; the R2 and RMSE at monthly scales generally fell in the range of 0.9–0.95 and 1–2 °C. Using these continuous and consistent Tair datasets, we found temperature increases in the elevation range between 2000–3000 m and 4000–5000 m, whereas the elevation interval at 6000–7000 m exhibits a cooling trend. The developed datasets, findings and methodology contribute to global studies on accelerated warming.


Sign in / Sign up

Export Citation Format

Share Document