Remote sensing of multiyear ice in the Antarctic

2021 ◽  
Author(s):  
Christian Melsheimer ◽  
Gunnar Spreen

<p>The changing sea ice cover of polar seas is of key importance for the exchange of heat and moisture between atmosphere and ocean and hence for weather and climate, and in addition, the sea ice and its long-term changes are  an indicator for global change.  In order to properly understand and model the evolution of the sea ice cover and its interaction with the global climate system, we need detailed knowledge about sea ice, i.e., not only its extent, but also, e.g., its thickness and its type.</p> <p>We can broadly distinguish a few different sea ice types that have different dynamic and thermodynamic properties, namely: young ice (YI, thin/smooth new ice), first-year ice (FYI, formed during one cold season), and multiyear ice (MYI, which has survived at least one melt season). The  latter is of particular interest as it is usually thicker than other ice types (thus, takes more time to melt), much less saline, and may accommodate a unique ecosystem. Sea ice types in the Antarctic, until recently, have not been monitored much because of the lack of appropriate remote  sensing methods. While the Antarctic sea ice is greatly dominated by FYI, there are, nevertheless, considerable amounts of MYI, in particular in the Weddell Sea.</p> <p>We have recently adapted an algorithm for the detection of Arctic sea ice types for application in the Antarctic. The algorithm uses data from space-borne microwave radiometers and scatterometers as input. So far we have compiled a time series of daily Antarctic MYI data (and also an estimate of YI and FYI) data at a spatial resolution of 12.5 km, starting in 2013, but excluding the melt seasons when the algorithm does not work. Here give an overview of the data, showing, e.g., the quite large interannual variability of MYI and its evolution in the Weddell Sea, and discuss shortcomings of the algorithm and possible ways forward. The time series of daily Antarctic MYI data can in principle be extended backwards to the year 2000, when the used satellite data first became available, and with planned future satellite missions, it can be continued for years to come.</p>

Geology ◽  
2019 ◽  
Vol 47 (10) ◽  
pp. 963-967 ◽  
Author(s):  
Steffen Hetzinger ◽  
Jochen Halfar ◽  
Zoltán Zajacz ◽  
Max Wisshak

Abstract The fast decline of Arctic sea ice is a leading indicator of ongoing global climate change and is receiving substantial public and scientific attention. Projections suggest that Arctic summer sea ice may virtually disappear within the course of the next 50 or even 30 yr with rapid Arctic warming. However, limited observational records and lack of annual-resolution marine sea-ice proxies hamper the assessment of long-term changes in sea ice, leading to large uncertainties in predictions of its future evolution under global warming. Here, we use long-lived encrusting coralline algae that strongly depend on light availability as a new in situ proxy to reconstruct past variability in the duration of seasonal sea-ice cover. Our data represent the northernmost annual-resolution marine sea-ice reconstruction to date, extending to the early 19th century off Svalbard. Algal records show that the decreasing trend in sea-ice cover in the high Arctic had already started at the beginning of the 20th century, earlier than previously reported from sea-ice reconstructions based on terrestrial archives. Our data further suggest that, although sea-ice extent varies on multidecadal time scales, the lowest sea-ice values within the past 200 yr occurred at the end of the 20th century.


2020 ◽  
Author(s):  
Valeria Selyuzhenok ◽  
Denis Demchev ◽  
Thomas Krumpen

<p>Landfast sea ice is a dominant sea ice feature of the Arctic coastal region. As a part of Arctic sea ice cover, landfast ice is an important part of coastal ecosystem, it provides functions as a climate regulator and platform for human activity. Recent changes in sea ice conditions in the Arctic have also affected landfast ice regime. At the same time, industrial interest in the Arctic shelf seas continue to increase. Knowledge on local landfast ice conditions are required to ensure safety of on ice operations and accurate forecasting.  In order to obtain a comprehensive information on landfast ice state we use a time series of wide swath SAR imagery.  An automatic sea ice tracking algorithm was applied to the sequential SAR images during the development stage of landfast ice cover. The analysis of resultant time series of sea ice drift allows to classify homogeneous sea ice drift fields and timing of their attachment to the landfast ice. In addition, the drift data allows to locate areas of formation of grounded sea ice accumulation called stamukha. This information сan be useful for local landfast ice stability assessment. The study is supported by the Russian Foundation for Basic Research (RFBR) grant 19-35-60033.</p>


2022 ◽  
Author(s):  
Christian Melsheimer ◽  
Gunnar Spreen ◽  
Yufang Ye ◽  
Mohammed Shokr

Abstract. Polar sea ice is one of the Earth’s climate components that has been significantly affected by the recent trend of global warming. While the sea ice area in the Arctic has been decreasing at a rate of about 4 % per decade, the multi-year ice (MYI), also called perennial ice, is decreasing at a faster rate of 10 %–15 % per decade. On the other hand, the sea ice area in the Antarctic region was slowly increasing at a rate of about 1.5 % per decade until 2014 and since then it has fluctuated without a clear trend. However, no data about ice type areas are available from that region, particularly of MYI. Due to differences in physical and crystalline structural properties of sea ice and snow between the two polar regions, it has become difficult to identify ice types in the Antarctic. Until recently, no method has existed to monitor the distribution and temporal development of Antarctic ice types, particularly MYI throughout the freezing season and on decadal time scales. In this study, we have adapted a method for retrieving Arctic sea ice types and partial concentrations using microwave satellite observations to fit the Antarctic sea ice conditions. The first circumpolar, long-term time series of Antarctic sea ice types; MYI, first-year ice and young ice is being established, so far covering years 2013–2019. Qualitative comparison with synthetic aperture radar data, with charts of the development stage of the sea ice, and with Antarctic polynya distribution data show that the retrieved ice types, in particular the MYI, are reasonable. Although there are still some shortcomings, the new retrieval for the first time allows insight into the evolution and dynamics of Antarctic sea ice types. The current time series can in principle be extended backwards to start in the year 2002 and can be continued with current and future sensors.


2019 ◽  
Vol 116 (29) ◽  
pp. 14414-14423 ◽  
Author(s):  
Claire L. Parkinson

Following over 3 decades of gradual but uneven increases in sea ice coverage, the yearly average Antarctic sea ice extents reached a record high of 12.8 × 106 km2 in 2014, followed by a decline so precipitous that they reached their lowest value in the 40-y 1979–2018 satellite multichannel passive-microwave record, 10.7 × 106 km2, in 2017. In contrast, it took the Arctic sea ice cover a full 3 decades to register a loss that great in yearly average ice extents. Still, when considering the 40-y record as a whole, the Antarctic sea ice continues to have a positive overall trend in yearly average ice extents, although at 11,300 ± 5,300 km2⋅y−1, this trend is only 50% of the trend for 1979–2014, before the precipitous decline. Four of the 5 sectors into which the Antarctic sea ice cover is divided all also have 40-y positive trends that are well reduced from their 2014–2017 values. The one anomalous sector in this regard, the Bellingshausen/Amundsen Seas, has a 40-y negative trend, with the yearly average ice extents decreasing overall in the first 3 decades, reaching a minimum in 2007, and exhibiting an overall upward trend since 2007 (i.e., reflecting a reversal in the opposite direction from the other 4 sectors and the Antarctic sea ice cover as a whole).


2011 ◽  
Vol 24 (9) ◽  
pp. 2378-2390 ◽  
Author(s):  
Kyle C. Armour ◽  
Cecilia M. Bitz ◽  
LuAnne Thompson ◽  
Elizabeth C. Hunke

Abstract Recent observations of Arctic sea ice show that the decrease in summer ice cover over the last few decades has occurred in conjunction with a significant loss of multiyear ice. The transition to an Arctic that is populated by thinner, first-year sea ice has important implications for future trends in area and volume. Here, a reduced model for Arctic sea ice is developed. This model is used to investigate how the survivability of first-year and multiyear ice controls the mean state, variability, and trends in ice area and volume. A hindcast with a global dynamic–thermodynamic sea ice model that traces first-year and multiyear ice is used to estimate the survivability of each ice type. These estimates of survivability, in concert with the reduced model, yield persistence time scales of September area and volume anomalies and the characteristics of the sensitivity of sea ice to climate forcing that compare well with a fully coupled climate model. The September area is found to be nearly in equilibrium with climate forcing at all times, and therefore the observed decline in summer sea ice cover is a clear indication of a changing climate. Keeping an account of first-year and multiyear ice area within global climate models offers a powerful way to evaluate those models with observations, and could help to constrain projections of sea ice decline in a warming climate.


1998 ◽  
Vol 27 ◽  
pp. 455-460 ◽  
Author(s):  
R. Fisher ◽  
Victoria I. Lytle

Sea ice is a highly mobile component of the Antarctic environment. Its velocity and deformation are critical processes, important in global climate models. These variables are determined by the balance of atmospheric and oceanic forces on each ice Hoe and variations in these forcings, and can produce regions ofdivcrgence or convergence. Surface drag coefficients relate the forces due to wind or water to the stress applied to the ice floe. This study adds to the limited drag coefficients reported previously for Antarctic data. Surface elevation profiles were collected during two ship-based voyages to the Weddell Sea in 1992 and 1994, and were also recorded on Ice Station Weddell in 1992. These data are used to derive surface drag coefficients using an empirical formulation following Banke and others (1980). The eastern and western regions of the Weddell Sea contain primarily first- and second-year ice, respectively. Despite these different ice types, the drag coefficients calculated are similar. The difieren! ice-drifl/wind-speed ratio in the two regions suggests a difference in ocean currents, internal ice stress or water drag. The drag coefficients calculated ranged between 1.2 X 10 −3 and 2.2 X 10 −3 The results compare well with other published Antarctic coefficients, and are generally smaller than those reported for the Arctic.


2012 ◽  
Vol 19 (1) ◽  
pp. 81-94 ◽  
Author(s):  
M. Müller-Stoffels ◽  
R. Wackerbauer

Abstract. The Arctic's sea ice cover has been receding rapidly in recent years, and global climate models typically predict a further decline over the next century. It is an open question whether a possible loss of Arctic sea ice is reversible. We study the stability of Arctic model sea ice in a conceptual, two-dimensional energy-based regular network model of the ice-ocean layer that considers ARM's longwave radiative budget data and SHEBA albedo measurements. Seasonal ice cover, perennial ice and perennial open water are asymptotic states accessible by the model. We show that the shape of albedo parameterization near the melting temperature differentiates between reversible continuous sea ice decrease under atmospheric forcing and hysteresis behavior. Fixed points induced solely by the surface energy budget are essential for understanding the interaction of surface energy with the radiative forcing and the underlying body of ice/water, particularly close to a bifurcation point. Future studies will explore ice edge stability and reversibility in this lattice model, generalized to a latitudinal transect with spatiotemporal lateral atmospheric heat transfer and high spatial resolution.


2012 ◽  
Vol 6 (1) ◽  
pp. 193-198 ◽  
Author(s):  
J. K. Ridley ◽  
J. A. Lowe ◽  
H. T. Hewitt

Abstract. It is well accepted that increasing atmospheric CO2 results in global warming, leading to a decline in polar sea ice area. Here, the specific question of whether there is a tipping point in the sea ice cover is investigated. The global climate model HadCM3 is used to map the trajectory of sea ice area under idealised scenarios. The atmospheric CO2 is first ramped up to four times pre-industrial levels (4 × CO2), then ramped down to pre-industrial levels. We also examine the impact of stabilising climate at 4 × CO2 prior to ramping CO2 down to pre-industrial levels. Against global mean temperature, Arctic sea ice area is reversible, while the Antarctic sea ice shows some asymmetric behaviour – its rate of change slower, with falling temperatures, than its rate of change with rising temperatures. However, we show that the asymmetric behaviour is driven by hemispherical differences in temperature change between transient and stabilisation periods. We find no irreversible behaviour in the sea ice cover.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Vladimir V. Ivanov ◽  
Vladimir A. Alexeev ◽  
Irina Repina ◽  
Nikolay V. Koldunov ◽  
Alexander Smirnov

We focus on the Arctic Ocean between Svalbard and Franz Joseph Land in order to elucidate the possible role of Atlantic water (AW) inflow in shaping ice conditions. Ice conditions substantially affect the temperature regime of the Spitsbergen archipelago, particularly in winter. We test the hypothesis that intensive vertical mixing at the upper AW boundary releases substantial heat upwards that eventually reaches the under-ice water layer, thinning the ice cover. We examine spatial and temporal variation of ice concentration against time series of wind, air temperature, and AW temperature. Analysis of 1979–2011 ice properties revealed a general tendency of decreasing ice concentration that commenced after the mid-1990s. AW temperature time series in Fram Strait feature a monotonic increase after the mid-1990s, consistent with shrinking ice cover. Ice thins due to increased sensible heat flux from AW; ice erosion from below allows wind and local currents to more effectively break ice. The winter spatial pattern of sea ice concentration is collocated with patterns of surface heat flux anomalies. Winter minimum sea ice thickness occurs in the ice pack interior above the AW path, clearly indicating AW influence on ice thickness. Our study indicates that in the AW inflow region heat flux from the ocean reduces the ice thickness.


Sign in / Sign up

Export Citation Format

Share Document