The dependence of global and local metrics of super-rotation on planetary rotation rate

Author(s):  
Neil Lewis ◽  
Greg Colyer ◽  
Peter Read

<div> <div>Super-rotation is a phenomenon in atmospheric dynamics where the axial angular momentum of an atmosphere in some way exceeds that of the underlying planet. In this presentation, we will discuss the dependency of both globally-integrated, and local metrics of super-rotation on planetary rotation rate, revealed through analysis of idealised General Circulation Model experiments. The model used here is based on the Held-Suarez benchmark for a dry, 'Earth-like' atmosphere, and results from both axisymmetric and three-dimensional experiments will be presented. Previous work has shown that the three-dimensional configuration used here will transition to a state of equatorial super-rotation if the rotation rate is reduced sufficiently from the Earth's. This motivates the question: How does super-rotation strength depend on rotation rate?</div> <br><div>We will use the term 'global super-rotation' to refer to an atmosphere with excess of globally-integrated axial angular momentum relative to that achieved by solid body co-rotation with the underlying planet, and 'local super-rotation' to refer to the existence of some region within the atmosphere where axial angular momentum exceeds that of the underlying planet at the equator. In an inviscid, axisymmetric atmosphere, the axial component of specific angular momentum is materially conserved. Consequently, in such a system local super-rotation is forbidden, although global super-rotation may still be achieved if a meridional circulation is able to transport fluid equilibrated with the equatorial surface poleward. If the restriction of axisymmetry is lifted, then local super-rotation may exist if non-axisymmetric disturbances that act to transport angular momentum up-gradient are present. The atmospheres of Venus, the Earth, Mars, and Titan may be considered to be globally super-rotating, however only Venus and Titan exhibit permanent local super-rotation at the equator.</div> <br><div>The results from axisymmetric experiments reveal that at high rotation rate (e.g., greater than 1/4 of the Earth's), the degree of global super-rotation scales inversely with the square of the rotation rate. In the low rotation rate limit, the degree of global super-rotation saturates, and becomes independent of rotation rate. We will show that the high, and low rotation rate dependencies can be predicted by a single analytic scaling for global super-rotation. Our three-dimensional experiments exhibit the same scaling behaviour for global super-rotation as observed in the axisymmetric experiments. The degree of global super-rotation achieved by the three-dimensional experiments is less than that of the axisymmetric experiments at high rotation rates, and greater at lower rotation rates, but in both limits the deviation from the axisymmetric 'base circulation' is small. In the low-rotation rate limit, local super-rotation is accelerated at the equator, which is consistent with the three-dimensional experiments obtaining a higher degree of global super-rotation than their axisymmetric counterparts. Estimates for global super-rotation strength on the Earth and Mars agree closely with the results of our three-dimensional numerical experiments, but Venus and Titan achieve substantially stronger global, and local super-rotation than found here. It appears that low rotation rate alone cannot induce substantial excess global super-rotation, relative to the axisymmetric base circulation we identify.</div> </div>

1991 ◽  
Vol 130 ◽  
pp. 336-341
Author(s):  
David F. Gray

AbstractEvolved stars tell us a great deal about dynamos. The granulation boundary shows us where solar-type convection begins. Since activity indicators also start at this boundary, it is a good bet that solar-type convection is an integral part of dynamo activity for all stars. The rotation boundary tells us where the magnetic fields of dynamos become effective in dissipating angular momentum, and rotation beyond the boundary tells us the limiting value needed for a dynamo to function. The observed uniqueness of rotation rates after the rotation boundary is crossed can be understood through the rotostat hypothesis. Quite apart from the reason for the unique rotation rate, its existence can be used to show that magnetic activity of giants is concentrated to the equatorial latitudes, as it is in the solar case. The coronal boundary in the H-R diagram is probably nothing more than a map of where rotation becomes too low to sustain dynamo activity.


2013 ◽  
Vol 730 ◽  
pp. 379-391 ◽  
Author(s):  
A. Rao ◽  
J. S. Leontini ◽  
M. C. Thompson ◽  
K. Hourigan

AbstractThe flow around an isolated cylinder spinning at high rotation rates in free stream is investigated. The existence of two steady two-dimensional states is confirmed, as is the existence of a secondary mode of vortex shedding. The stability of the two steady states to three-dimensional perturbations is established using linear stability analysis. At lower rotation rates on the first steady state, two three-dimensional modes are confirmed, and their structure and curves of marginal stability as a function of rotation rate and Reynolds number are determined. One mode (named mode $E$) appears consistent with a hyperbolic instability in the wake, while the second (named mode $F$) appears to be a centrifugal instability of the flow very close to the cylinder surface. At higher rotation rates on the second steady state, a single three-dimensional mode due to centrifugal instability (named mode ${F}^{\prime } $) is found. This mode becomes increasingly difficult to excite as the rotation rate is increased.


2015 ◽  
Vol 72 (11) ◽  
pp. 4281-4296 ◽  
Author(s):  
Anne L. Laraia ◽  
Tapio Schneider

Abstract Atmospheric superrotation with prograde equatorial winds and an equatorial angular momentum maximum is ubiquitous in planetary atmospheres. It is clear that eddy fluxes of angular momentum toward the equator are necessary to generate it. But under what conditions superrotation arises has remained unclear. This paper presents simulations and a scaling theory that establish conditions under which superrotation occurs in terrestrial atmospheres. Whether superrotation arises depends on the relative importance of factors that favor or disfavor superrotation. Convection preferentially generates Rossby waves near the equator, where the Rossby number is O(1). Since the Rossby waves transport angular momentum toward their source regions, this favors superrotation. Meridional temperature gradients preferentially lead to baroclinic instability and wave generation away from the equator. Eddy transport of angular momentum toward the baroclinic source region implies transport out of low latitudes, which disfavors superrotation. Simulations with an idealized GCM show that superrotation tends to arise when the equatorial convective generation of wave activity and its associated eddy angular momentum flux convergence exceed the baroclinic eddy angular momentum flux divergence. Convective and baroclinic wave activity generation is related through scaling arguments to mean-flow properties, such as planetary rotation rates and meridional temperature gradients. The scaling arguments show, for example, that superrotation is favored when the off-equatorial baroclinicity and planetary rotation rates are low, as they are, for example, on Venus. Similarly, superrotation is favored when the convective heating strengthens, which may account for the superrotation seen in extreme global warming simulations.


2013 ◽  
Vol 734 ◽  
pp. 567-594 ◽  
Author(s):  
A. Radi ◽  
M. C. Thompson ◽  
A. Rao ◽  
K. Hourigan ◽  
J. Sheridan

AbstractA recent numerical study by Rao et al. (J. Fluid Mech., vol. 717, 2013, pp. 1–29) predicted the existence of several previously unobserved linearly unstable three-dimensional modes in the wake of a spinning cylinder in cross-flow. While linear stability analysis suggests that some of these modes exist for relatively limited ranges of Reynolds numbers and rotation rates, this may not be true for fully developed nonlinear wakes. In the current paper, we present the results of water channel experiments on a rotating cylinder in cross-flow, for Reynolds numbers $200\leqslant \mathit{Re}\leqslant 275$ and non-dimensional rotation rates $0\leqslant \alpha \leqslant 2. 5$. Using particle image velocimetry and digitally post-processed hydrogen bubble flow visualizations, we confirm the existence of the predicted modes for the first time experimentally. For instance, for $\mathit{Re}= 275$ and a rotation rate of $\alpha = 1. 7$, we observe a subharmonic mode, mode C, with a spanwise wavelength of ${\lambda }_{z} / d\approx 1. 1$. On increasing the rotation rate, two modes with a wavelength of ${\lambda }_{z} / d\approx 2$ become unstable in rapid succession, termed modes D and E. Mode D grows on a shedding wake, whereas mode E consists of streamwise vortices on an otherwise steady wake. For $\alpha \gt 2. 2$, a short-wavelength mode F appears localized close to the cylinder surface with ${\lambda }_{z} / d\approx 0. 5$, which is presumably a manifestation of centrifugal instability. Unlike the other modes, mode F is a travelling wave with a spanwise frequency of ${\mathit{St}}_{3D} \approx 0. 1$. In addition to these new modes, observations on the one-sided shedding process, known as the ‘second shedding’, are reported for $\alpha = 5. 1$. Despite suggestions from the literature, this process seems to be intrinsically three-dimensional. In summary, our experiments confirm the linear predictions by Rao et al., with very good agreement of wavelengths, symmetries and the phase velocity for the travelling mode. Apart from this, these experiments examine the nonlinear saturated state of these modes and explore how the existence of multiple unstable modes can affect the selected final state. Finally, our results establish that several distinct three-dimensional instabilities exist in a relatively confined area on the $\mathit{Re}$–$\alpha $ parameter map, which could account for their non-detection previously.


2019 ◽  
Vol 76 (7) ◽  
pp. 1989-2004 ◽  
Author(s):  
Martin S. Singh

Abstract The role of planetary rotation in limiting the extent of the cross-equatorial solsticial Hadley cell (SHC) is investigated using idealized simulations with an aquaplanet general circulation model run under perpetual-solstice conditions. Consistent with previous studies that include a seasonal cycle, the SHC extent increases with decreasing rotation rate, and it occupies the entire globe for sufficiently low planetary rotation rates. A simple theory for the summer-hemisphere extent of the SHC is constructed in which it is assumed that the SHC occupies regions for which a hypothetical radiative–convective equilibrium state is physically unattainable. The theory predicts that the SHC extends farther into the summer hemisphere as the rotation rate is decreased, qualitatively reproducing the behavior of the simulations, but it generally underestimates the simulated SHC extent. A diagnostic theory for the summer-hemisphere SHC extent is then developed based on the assumptions of slantwise convective neutrality and conservation of angular momentum within the Hadley cell. The theory relates the structure of the SHC in the summer hemisphere to the distribution of boundary layer entropy in the dynamically equilibrated simulations. The resultant diagnostic for the SHC extent generalizes the convective quasi-equilibrium-based constraint of Privé and Plumb, in which the position of rain belts is related to maxima in the low-level entropy distribution.


2017 ◽  
Vol 26 (05) ◽  
pp. 1741016
Author(s):  
Angela D. V. Di Virgilio

Gyroscopes IN General Relativity (GINGER) is a proposal of an Earth-base experiment to measure the Lense–Thirring effect. GINGER uses an array of ring lasers, which are the most sensitive inertial sensors to measure the rotation rate of the Earth. GINGER is based on a three-dimensional array of large size ring lasers, able to measure the de Sitter and Lense–Thirring effects. The instrument will be located in the INFN Gran Sasso underground laboratory, in Italy. We describe preliminary developments and measurements. Earlier prototypes based in Italy, GP2, GINGERino, and G-LAS are also described and their preliminary results reported.


Author(s):  
You-Rong Li ◽  
Lan Peng ◽  
Shuang-Ying Wu ◽  
Dan-Ling Zeng ◽  
Nobuyuki Imaishi

In order to understand the mechanism of the surface patterns on silicon melt in Czochralski furnaces, we conducted a series of unsteady three-dimensional numerical simulations of silicon melt flow in a rotating shallow annular pool in the counter-clockwise direction under micro-gravity. The pool is heated from the outer cylindrical wall and cooled at the bottom of an inner cylinder. The temperature differences between the vertical outer wall and the inner wall are 16 K, 21 K, 26 K and 32 K. Bottom and top surfaces of the melt pool are adiabatic. When the rotation rate is very slow, the hydrothermal waves are dominant in the pool and propagate in a direction opposite to the pool rotation. When the rotation rate exceeds the first critical value, the phase velocity of the hydrothermal waves increases rapidly and its propagating direction becomes same as that of the pool rotation. With much larger rotation rate, the flow becomes an axisymmetric steady flow. Details of the flow and temperature disturbances are discussed and the critical rotation rates are determined.


2008 ◽  
Vol 607 ◽  
pp. 1-11 ◽  
Author(s):  
R. EL AKOURY ◽  
M. BRAZA ◽  
R. PERRIN ◽  
G. HARRAN ◽  
Y. HOARAU

The flow around a circular cylinder rotating with a constant angular velocity, placed in a uniform stream, is investigated by means of two- and three-dimensional direct numerical simulations. The successive changes in the flow pattern are studied as a function of the rotation rate. Suppression of vortex shedding occurs as the rotation rate increases (>2). A second kind of instabilty appears for higher rotation speed where a series of counter-clockwise vortices is shed in the upper shear layer. Three-dimensional computations are carried out to analyse the three-dimensional transition under the effect of rotation for low rotation rates. The rotation attenuates the secondary instability and increases the critical Reynolds number for the appearance of this instability. The linear and nonlinear parts of the three-dimensional transition have been quantified by means of the amplitude evolution versus time, using the Landau global oscillator model. Proper orthogonal decomposition of the three-dimensional fields allowed identification of the most energetic modes and three-dimensional flow reconstruction involving a reduced number of modes.


2021 ◽  
Vol 34 (9) ◽  
pp. 3543-3554
Author(s):  
Tyler Cox ◽  
Kyle C. Armour ◽  
Gerard H. Roe ◽  
Aaron Donohoe ◽  
Dargan M. W. Frierson

AbstractAtmospheric heat transport is an important piece of our climate system, yet we lack a complete theory for its magnitude or changes. Atmospheric dynamics and radiation play different roles in controlling the total atmospheric heat transport (AHT) and its partitioning into components associated with eddies and mean meridional circulations. This work focuses on two specific controls: a radiative one, namely atmospheric radiative temperature tendencies, and a dynamic one, the planetary rotation rate. We use an idealized gray radiation model to employ a novel framework to lock the radiative temperature tendency and total AHT to climatological values, even while the rotation rate is varied. This setup allows for a systematic study of the effects of radiative tendency and rotation rate on AHT. We find that rotation rate controls the latitudinal extent of the Hadley cell and the heat transport efficiency of eddies. Both the rotation rate and radiative tendency influence the strength of the Hadley cell and the strength of equator–pole energy differences that are important for AHT by eddies. These two controls do not always operate independently and can reinforce or dampen each other. In addition, we examine how individual AHT components, which vary with latitude, sum to a total AHT that varies smoothly with latitude. At slow rotation rates the mean meridional circulation is most important in ensuring total AHT varies smoothly with latitude, while eddies are most important at rotation rates similar to, and faster than, those of Earth.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qiang Wang ◽  
Yong Ge ◽  
Hong-xiang Sun ◽  
Haoran Xue ◽  
Ding Jia ◽  
...  

AbstractCrystalline materials can host topological lattice defects that are robust against local deformations, and such defects can interact in interesting ways with the topological features of the underlying band structure. We design and implement a three dimensional acoustic Weyl metamaterial hosting robust modes bound to a one-dimensional topological lattice defect. The modes are related to topological features of the bulk bands, and carry nonzero orbital angular momentum locked to the direction of propagation. They span a range of axial wavenumbers defined by the projections of two bulk Weyl points to a one-dimensional subspace, in a manner analogous to the formation of Fermi arc surface states. We use acoustic experiments to probe their dispersion relation, orbital angular momentum locked waveguiding, and ability to emit acoustic vortices into free space. These results point to new possibilities for creating and exploiting topological modes in three-dimensional structures through the interplay between band topology in momentum space and topological lattice defects in real space.


Sign in / Sign up

Export Citation Format

Share Document