Urban Drainage Systems modelling for Early Warning Service Using Data-Driven Modelling

Author(s):  
Solomon Seyoum ◽  
Boud Verbeiren ◽  
Patrick Willems

<p>Urban catchments are characterized by a high degree of imperviousness, as well as a highly modified landscape and interconnectedness. The hydrological response of such catchments is usually complex and fast and sensitive to precipitation variability at small scales. To properly model and understand urban hydrological responses, high-resolution precipitation measurements to capture spatiotemporal variability is crucial input.</p><p>In urban areas floods are among the most recurrent and costly disasters, as these areas are often densely populated and contain vital infrastructure. Runoff from impervious surfaces as a result of extreme rainfall leads to pluvial flooding if the system’s drainage capacity is exceeded. Due to the fast onset and localised nature of pluvial flooding, high-resolution models are needed to produce fast simulations of flood forecasts for early warning system development. Data-driven models for predictive modelling have been gaining popularity, due to the fact they require minimal inputs and have shorter processing time compared to other types of models.</p><p>Data-driven models to forecast peak flows in drainage channels of Brussels, Belgium are being developed at sub-catchment scale, as a proxy for pluvial flooding within the FloodCitiSense project. FloodCitiSense aims to develop an urban pluvial flood early warning service. The effectiveness of these models relies on the input data resolution among others. High-temporal resolution rainfall and runoff data from 13 rainfall and 13 flow gauging stations in Brussels for several years is collected (Open data from Flowbru.be) and the data-driven models for forecasting peak flows in drainage channels are build using the Random Forest classification model.</p><p>Optimal model inputs are determined to increase model performance, including rainfall and runoff information from the current time step, as well as additional information derived from previous time steps.</p><p>The additional inputs are determined by progressively including rainfall data from neighboring stations and runoff from previous time steps equivalent to the lag time equal to the forecasting horizon, in our case two hours. The data-driven model we develop has the form as shown in the following equation.</p><p><strong><em>Q<sub>t</sub> = f(Q<sub>t-lag</sub>, ∑RF<sub>i,j</sub>)  </em></strong><em>for <strong>i</strong> is the number of rainfall stations considered and <strong>j</strong> is the time  from <strong>t-lag</strong> to <strong>t</strong></em></p><p>Where <strong><em>Q<sub>t</sub>  </em></strong>is the flow at a flow station at time <strong><em>t</em></strong>, <strong><em>Q<sub>t-lag </sub></em></strong>is the lagged flow at the station and <strong><em>RF<sub>i,j </sub></em></strong>is the rainfall values for station <strong><em>i</em></strong> and time <strong><em>j</em></strong>.</p><p>For Brussels nine relevant sub-catchments were identified based on historical flood frequency for which we are building data-driven flood forecasting models. For each sub-catchment, RF models are being trained and tested. More than 200,000 data point were available for training and testing the models. For most of the flow stations the data-driven models perform well with R-squared values up to 0.84 for training and 0.6 for testing for a 2-hour forecast horizon. </p><p>To improve the reliability of the data-driven models, as next step, we are including radar rainfall data input, which has the ability to capture temporal and spatial variability of rainfall from localized convective storms to large scale moving storms.</p><p><strong>KEYWORDS</strong></p><p>Data driven models, FloodCitiSense, Flood Early Warning System, Urban pluvial flooding</p>

PEDIATRICS ◽  
2016 ◽  
Vol 137 (Supplement 3) ◽  
pp. 256A-256A
Author(s):  
Catherine Ross ◽  
Iliana Harrysson ◽  
Lynda Knight ◽  
Veena Goel ◽  
Sarah Poole ◽  
...  

2017 ◽  
Vol 18 (5) ◽  
pp. 469-476 ◽  
Author(s):  
Catherine E. Ross ◽  
Iliana J. Harrysson ◽  
Veena V. Goel ◽  
Erika J. Strandberg ◽  
Peiyi Kan ◽  
...  

2018 ◽  
Vol 92 (2) ◽  
pp. 1237-1265 ◽  
Author(s):  
Melisa Acosta-Coll ◽  
Francisco Ballester-Merelo ◽  
Marcos Martínez-Peiró

2020 ◽  
Author(s):  
Nikolaos Papagiannopoulos ◽  
Giuseppe D'Amico ◽  
Anna Gialitaki ◽  
Nicolae Ajtai ◽  
Lucas Alados-Arboledas ◽  
...  

Abstract. A stand-alone lidar-based method for detecting airborne hazards for aviation in near-real-time (NRT) is presented. A polarization lidar allows for the identification of irregular-shaped particles such as volcanic dust and desert dust. The Single Calculus Chain (SCC) of the European Aerosol Lidar Network (EARLINET) delivers high resolution pre-processed data: the calibrated total attenuated backscatter and the calibrated volume linear depolarization ratio time series. From these calibrated lidar signals, the particle backscatter coefficient and the particle depolarization ratio can be derived in temporally-high resolution, and thus provide the basis of the NRT Early Warning System (EWS). In particular, an iterative method for the retrieval of the particle backscatter is implemented. This improved capability was designed as a pilot that will produce alerts for imminent threats for aviation. The method is applied to data during two diverse aerosol scenarios: first, a record breaking desert dust intrusion in March 2018 over Finokalia, Greece, and, second, an intrusion of volcanic particles originating from Mount Etna in June 2019 over Antikythera, Greece. Additionally, a devoted observational period including several EARLINET lidar systems demonstrates the network's preparedness to offer insight into natural hazards that affect the aviation sector.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1808 ◽  
Author(s):  
Alberto de la Fuente ◽  
Viviana Meruane ◽  
Carolina Meruane

The intensification of the hydrological cycle because of global warming raises concerns about future floods and their impact on large cities where exposure to these events has also increased. The development of adequate adaptation solutions such as early warning systems is crucial. Here, we used deep learning (DL) for weather-runoff forecasting in región Metropolitana of Chile, a large urban area in a valley at the foot of the Andes Mountains, with more than 7 million inhabitants. The final goal of this research is to develop an effective forecasting system to provide timely information and support in real-time decision making. For this purpose, we implemented a coupled model of a near-future global meteorological forecast with a short-range runoff forecasting system. Starting from a traditional hydrological conceptual model, we defined the hydro-meteorological and geomorphological variables that were used in the data-driven weather-runoff forecast models. The meteorological variables were obtained through statistical scaling of the Global Forecast System (GFS), thus enabling near-future prediction, and two data-driven approaches were implemented for predicting the entire hourly flow time-series in the near future (3 days), a simple Artificial Neural Networks (ANN) and a Deep Learning (DL) approach based on Long-Short Term Memory (LSTM) cells. We show that the coupling between meteorological forecasts and data-driven weather-runoff forecast models are able to satisfy two basic requirements that any early warning system should have: The forecast should be given in advance, and it should be accurate and reliable. In this context, DL significantly improves runoff forecast when compared with a traditional data-driven approach such as ANN, being accurate in predicting time-evolution of output variables, with an error of 5% for DL, measured in terms of the root mean square error (RMSE) for predicting the peak flow, compared to 15.5% error for ANN, which is adequate to warn communities at risk and initiate disaster response operations.


2015 ◽  
Vol 15 (4) ◽  
pp. 853-861 ◽  
Author(s):  
S. Segoni ◽  
A. Battistini ◽  
G. Rossi ◽  
A. Rosi ◽  
D. Lagomarsino ◽  
...  

Abstract. We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity–duration rainfall thresholds (Segoni et al., 2014b) and makes use of LAMI (Limited Area Model Italy) rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult, and it provides different outputs. When switching among different views, the system is able to focus both on monitoring of real-time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a basic data view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain gauges can be displayed and constantly compared with rainfall thresholds. To better account for the variability of the geomorphological and meteorological settings encountered in Tuscany, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of more than 300 rain gauges, it allows for the monitoring of each alert zone separately so that warnings can be issued independently. An important feature of the warning system is that the visualization of the thresholds in the WebGIS interface may vary in time depending on when the starting time of the rainfall event is set. The starting time of the rainfall event is considered as a variable by the early warning system: whenever new rainfall data are available, a recursive algorithm identifies the starting time for which the rainfall path is closest to or overcomes the threshold. This is considered the most hazardous condition, and it is displayed by the WebGIS interface. The early warning system is used to forecast and monitor the landslide hazard in the whole region, providing specific alert levels for 25 distinct alert zones. In addition, the system can be used to gather, analyze, display, explore, interpret and store rainfall data, thus representing a potential support to both decision makers and scientists.


2012 ◽  
Vol 542-543 ◽  
pp. 625-630
Author(s):  
Ming Hui Zhang ◽  
Yao Yu Zhang

To develop a lift early warning infrared device, as a part of land or boat (ship) early warning system, the system has the ability to target pre-discovery and instructions invasion. Methods: In support of distant air situation, alerts the enemy aircraft, missiles and other long-range goals, obtain the target type and preliminary judgment of grade, deliver the alarm information to the command system. The infrared alarm device detects the target's own infrared radiation passively, alarms the incoming targets at low altitude and low altitude remote, when radar and other equipment is out of work. Results: The accuracy of entire system reached 20" according the analysis. Conclusions: The device has a full range of complex background, with high sensitivity, high resolution, anti-jamming, fast response time and other characteristics


Sign in / Sign up

Export Citation Format

Share Document