Thickness-Dependent Oxidation Kinetics of Coated Films of a Self-Assembled Unsaturated Fatty Acid Aerosol Proxy with Evidence for Inert “Crust” Formation

Author(s):  
Adam Milsom ◽  
Adam M. Squires ◽  
Andrew D. Ward ◽  
Nicholas J. Terrill ◽  
Christian Pfrang

<p>This study focuses on the effect of surface film thickness on the ozone reaction kinetics of films of a self-assembled unsaturated fatty acid aerosol proxy coated inside quartz capillaries. It also reveals evidence for reaction stagnation and stopping for the thickest films, leaving a significant amount of unreacted material and suggesting that an inert product is formed during the course of the reaction. These findings have implications for the atmospheric lifetime of such a system.</p><p>The oleic acid-ozone reaction is used as the model system for heterogeneous oxidation reactions in organic aerosols. Major sources of oleic acid in the atmosphere include marine and cooking emissions. Oxidation of organic aerosols is known to affect Cloud Condensation Nuclei (CCN) generation and therefore cloud formation. It follows that factors affecting aerosol reactivity have an effect on cloud formation potential and therefore also on the climate.</p><p>In our experiments, oleic acid is mixed with its sodium salt (sodium oleate) to form a highly viscous self-assembled lamellar phase system observable using a synchrotron-based technique: Small Angle X-ray Scattering (SAXS). Here, we take advantage of intense synchrotron radiation to probe our coated capillary films. We use the observed decay of the self-assembled scattering peak as a function of time exposed to ozone. We have obtained ~50 kinetic decay parameters spanning a range of film thicknesses, showing a drastic increase in reaction kinetics with decreasing film thickness.</p><p>There is a linear relationship between increasing film thickness and amount of self-assembled material (reactant) remaining at the end of the reaction. This implies that a reaction product hinders further reactivity and that this product may take a while to form, explaining the occurrence only in thicker films.</p><p>Modelling studies will help us understand the mechanism behind these observations and to relate to a previously-postulated idea of an inert “crust” of products forming on the surface of this viscous aerosol proxy (Pfrang et al., Atmos. Chem. Phys., 2011, 11, 7343-7354).</p><p>In summary, we demonstrate thickness-dependent reaction kinetic parameters which vary significantly with film thickness, implying that the atmospheric lifetime for a film is sensitive to the film thickness. We present evidence for reaction stagnation by an as of yet unknown inert product. Kinetic modelling is ongoing in order to explain these findings.</p>

1936 ◽  
Vol 64 (3) ◽  
pp. 333-338 ◽  
Author(s):  
O. M. Helmer

The inhibiting action of pancreatic tissue was found to be associated with the unsaturated fatty acid fraction. As small an amount of fatty acid as 0.1 mg. inhibited the chicken sarcoma agent contained in 0.2 cc. of a 1:60 aqueous extract of Chicken Tumor I. The unsaturated fatty acid had an acid number and an iodine number similar to those for oleic acid. Commercial oleic acid also was found to inhibit the growth of the chicken sarcoma in comparable quantities.


2021 ◽  
Author(s):  
Adam Milsom ◽  
Adam M. Squires ◽  
Jacob A. Boswell ◽  
Nicholas J. Terrill ◽  
Andrew D. Ward ◽  
...  

Abstract. Organic aerosols are key components of the Earth’s atmospheric system. The phase state of organic aerosols is known to be a significant factor in determining aerosol reactivity, water uptake and atmospheric lifetime – with wide implications for cloud formation, climate, air quality and human health. Unsaturated fatty acids contribute to urban cooking emissions and sea spray aerosols. These compounds, exemplified by oleic acid and its sodium salt, are surface active and have been shown to self-assemble into a variety of liquid-crystalline phases upon addition of water. Here we observe a crystalline acid–soap complex in acoustically levitated oleic acid–sodium oleate particles. We developed a synchrotron-based simultaneous Small-Angle & Wide-Angle X-ray Scattering (SAXS/WAXS)/Raman microscopy system to probe physical and chemical changes in the proxy during exposure to humidity and the atmospheric oxidant ozone. We present a spatially resolved structural picture of a levitated particle during humidification, revealing a phase gradient consisting of a disordered liquid crystalline shell and crystalline core. Ozonolysis is significantly slower in the crystalline phase compared with the liquid phase and a significant portion (34 ± 8 %) of unreacted material remains after extensive oxidation. We present experimental evidence of inert surface layer formation during ozonolysis, taking advantage of spatially resolved simultaneous SAXS/WAXS experiments. These observations suggest atmospheric lifetimes of surface-active organic species in aerosols are highly phase dependent, potentially impacting on climate, urban air quality and long-range transport of pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs).


2020 ◽  
Vol 11 (2) ◽  
pp. 8904-8914

The objective of this study to compare the fatty acids composition in cooking oil from repeated frying without added turmeric extract and added. The research design is testing the composition of fatty acids in repeated cooking oil using two types of treatment, namely cooking oil from frying without adding turmeric extract and cooking oil from frying with 0.03% turmeric extract added with 10 times frying repeat because it is suspected that repeated frying will increase the composition of fatty acids in cooking oil. The analysis of fatty acids was conducted using gas chromatography. Based on these results that the fatty acid components were produced of saturated fatty acids, namely lauric acid, myristic acid, palmitic acid, and stearic acid, whereas unsaturated fatty acids also detected such as elaidic acid, oleic acid, linoleic acid, cis-11-eicosadienoic acid, linolenic acid, and cis-11,14-eicosadienoic acid. The highest saturated fatty acid content in cooking oil before frying is palmitic acid (30.88%), whereas unsaturated fatty acid was oleic acid (35.86%). The highest content of saturated fatty acids in cooking oil has been added turmeric extract before frying is palmitic acid (28.5%), while unsaturated fatty acid of oleic acid was 32.97%.


2018 ◽  
Vol 101 (5) ◽  
pp. 4259-4267 ◽  
Author(s):  
M. Baldin ◽  
D.E. Rico ◽  
M.H. Green ◽  
K.J. Harvatine

1982 ◽  
Vol 152 (2) ◽  
pp. 747-756
Author(s):  
T M Buttke ◽  
A L Pyle

The effects of unsaturated fatty acid deprivation on lipid synthesis in Saccharomyces cerevisiae strain GL7 were determined by following the incorporation of [14C]acetate. Compared to yeast cells grown with oleic acid, unsaturated fatty acid-deprived cells contained 200 times as much 14C label in squalene, with correspondingly less label in 2,3-oxidosqualene and 2,3;22,23-dioxidosqualene. Cells deprived of either methionine or cholesterol did not accumulate squalene, demonstrating that the effect of unsaturated fatty acid starvation on squalene oxidation was not due to an inhibition of cell growth. Cells deprived of olefinic supplements displayed additional changes in lipid metabolism: (i) an increase in 14C-labeled diacylglycerides, (ii) a decrease in 14C-labeled triacylglycerides, and (iii) increased levels of 14C-labeled decanoic and dodecanoic fatty acids. The changes in squalene oxidation and acylglyceride metabolism in unsaturated fatty acid-deprived cells were readily reversed by adding oleic acid. Pulse-chase studies demonstrated that the [14C]squalene and 14C-labeled diacylglycerides which accumulated during starvation were further metabolized when cells were resupplemented with oleic acid. These results demonstrate that unsaturated fatty acids are essential for normal lipid metabolism in yeasts.


2020 ◽  
Vol 263 ◽  
pp. 114402 ◽  
Author(s):  
Huanhuan Jiang ◽  
C.M. Sabbir Ahmed ◽  
Zixu Zhao ◽  
Jin Y. Chen ◽  
Haofei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document