Soil Organic Matter stability along altitudinal gradients in the French Alps

Author(s):  
Jérôme Poulenard ◽  
Norine Khedim ◽  
Lauric Cecillon ◽  
Amélie Sailard ◽  
Pierre Barré ◽  
...  

<p>High-elevation ecosystems are considered as systems that have accumulated large amounts of organic carbon in their soils over the past millennia. However, there are still large uncertainties about soil organic matter (SOM) stocks and stability in mountain areas . The fate of SOM in alpine environments is particularly questioned in the context of climate change.</p><p>The aim of this study was to investigate SOM stocks and biogeochemical characteristics of SOM along altitudinal gradients to decipher their climatic and biogeochemical drivers. To do so, we used the soil samples set of the French ORCHAMP long-term observatory network. ORCHAMP is built around multiple altitudinal gradients (ca. 1000m of elevation gain representative of the pedoclimatic variability of the French Alps. Each gradient is made of 5 to 8 permanent plots distributed regularly each 200 m of elevation, from the valley (1000 m a.s.l.) to the mountain top (until 3000 m a.s.l.). We studied 18 elevational gradients, including 105 soil profiles and 350 soil horizons. The biogeochemical stability of SOM was estimated with Rock-Eval® thermal analysis.</p><p>SOM stocks are extremely variable and do not increase with elevation . The size of the thermally labile SOM  pool strongly increases with elevation. The high lability of SOM revealed by Rock-Eval® thermal analysis suggests a generally high vulnerability of SOM to climate change in alpine environments. The mechanisms explaining the maintenance of this SOM pool in alpine environments are still under study. Hypotheses involving complex balances between climate, nature of fresh organic matter, and enzymatic activities will be discussed.</p><p> </p>

2021 ◽  
Author(s):  
Oscar Pascal Malou ◽  
Tiphaine Chevallier ◽  
David Sebag ◽  
Patricia Moulin ◽  
Ndèye Yacine Badiane Ndour ◽  
...  

<p>Soil carbon (C), now more than ever, attracts the interest of the scientific community for its importance in combating climate change and achieving food security. As a result, its key role in agricultural soil fertility and in anthropogenic greenhouse gas emissions mitigation is high on international agendas. A key issue regarding the linkage between food security and carbon storage concerns the mineralization or the stability of soil organic matter (SOM). Rock-Eval<sup>®</sup> analysis was used to examine the thermal stability of SOM and these results were presented in details at the EGU General Assembly in 2020 (EGU2020-11229). Several indicators are used to further appreciate the quantity and quality of SOM: particle size fractionation (POM-C), determination of permanganate oxidizable carbon (POX-C) and carbon mineralization kinetics (Min-C). The results of both approaches are crossed and presented here. Soils were sampled from two soil layers (0-10 et 10-30 cm) in agricultural plots representative organic inputs practices in local agricultural systems (No input, +Millet residues, +Manure and +Organic wastes). Total soil organic carbon (SOC) concentrations ranged from 1.8 to 18.5 g C.kg<sup>-1</sup> soil (mean ± standard deviation: 5.6 ± 0.4 g C.kg<sup>-1</sup> soil) in the surface layer (0-10 cm) and from 1.5 to 11.3 g C.kg<sup>-1</sup> soil (mean ± standard deviation: 3.3 ± 0.2 g C.kg<sup>-1</sup> soil) in 10-30 cm deep layer. The soil organic matter in these Arenosols while positively affected by organic inputs is dominated by thermally labile forms. The POM-C fractions represent respectively 45 % and 24 % of the COS in the 0-10 cm and 10-30 cm soil layers respectively. Permanganate oxidizable carbon (POX-C) and mineralizable C (Min-C) averaged 254 ± 14 mg C.kg<sup>-1</sup> soil and 10.7 ± 1.2 mg C-CO<sub>2</sub> kg<sup>-1</sup> soil in the 0-10 cm layer. Our results show that in different situations, the labile pools POM-C, POX-C and Min-C are linked to the active thermal pools A1 (highly labile pool), A2 (labile pool), A3 (resistant pool) and even A4 (refractory pool). The A3 and A4 pools, which are known to be relatively stable in more clayey soils, are in fact quickly mineralized in the sandy soils of this region. This intense mineralization of SOM promotes the recycling of nutrients which is excellent for productivity of these agrosystems, but not for mitigation of climate change in the long term.</p><p>keywords: Sahel ; Arenosols ; Thermal stability ; Biogeochemical stability ; Rock-Eval analysis, POM-C ; POX-C ; Min-C.</p>


2021 ◽  
Author(s):  
Moritz Mohrlok ◽  
Victoria Martin ◽  
Alberto Canarini ◽  
Wolfgang Wanek ◽  
Michael Bahn ◽  
...  

<p>Soil organic matter (SOM) is composed of many pools with different properties (e.g. turnover times) which are generally used in biogeochemical models to predict carbon (C) dynamics. Physical fractionation methods are applied to isolate soil fractions that correspond to these pools. This allows the characterisation of chemical composition and C content of these fractions. There is still a lack of knowledge on how these individual fractions are affected by different climate change drivers, and therefore the fate of SOM remains elusive. We sampled soils from a multifactorial climate change experiment in a managed grassland in Austria four years after starting the experiment to investigate the response of SOM in physical soil fractions to temperature (eT: ambient and elevated by +3°C), atmospheric CO<sub>2</sub>-concentration (eCO<sub>2</sub>: ambient and elevated by +300 ppm) and to a future climate treatment (eT x eCO<sub>2</sub>: +3°C and + 300 ppm). A combination of slaking and wet sieving was used to obtain three size classes: macro-aggregates (maA, > 250 µm), micro-aggregates (miA, 63 µm – 250 µm) and free silt & clay (sc, < 63 µm). In both maA and miA, four different physical OM fractions were then isolated by density fractionation (using sodium polytungstate of ρ = 1.6 g*cm<sup>-3</sup>, ultrasonication and sieving): Free POM (fPOM), intra-aggregate POM (iPOM), silt & clay associated OM (SCaOM) and sand-associated OM (SaOM). We measured C and N contents and isotopic composition by EA-IRMS in all fractions and size classes and used a Pyrolysis-GC/MS approach to assess their chemical composition. For eCO<sub>2</sub> and eT x eCO<sub>2 </sub>plots, an isotope mixing-model was used to calculate the proportion of recent C derived from the elevated CO<sub>2 </sub>treatment. Total soil C and N did not significantly change with treatments.  eCO<sub>2</sub> decreased the relative proportion of maA-mineral-associated C and increased C in fPOM and iPOM. About 20% of bulk soil C was represented by the recent C derived from the CO<sub>2</sub> fumigation treatment. This significantly differed between size classes and density fractions (p < 0.001), which indicates inherent differences in OM age and turnover. Warming reduced the amount of new C incorporated into size classes. We found that each size class and fraction possessed a unique chemical fingerprint, but this was not significantly changed by the treatments. Overall, our results show that while climate change effects on total soil C were not significant after 4 years, soil fractions showed specific effects. Chemical composition differed significantly between size classes and fractions but was unaffected by simulated climate change. This highlights the importance to separate SOM into differing pools, while including changes to the molecular composition might not be necessary for improving model predictions.    </p>


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 26
Author(s):  
Marqués ◽  
Bienes ◽  
Ruiz-Colmenero

The wine captures grapes’ variety nature and vinification techniques, but other aspects of soil, climate and terrain are equally important for the terroir expression as a whole. Soil supplies moisture, nitrogen, and minerals. Particularly nitrogen obtained through mineralization of soil organic matter and water uptake are crucial for grape yield, berry sugar, anthocyanin and tannin concentration, hence grape quality and vineyard profitability. Different climatic conditions, which are predicted for the future, can significantly modify this relationship between vines and soils. New climatic conditions under global warming predict higher temperatures, erratic and extreme rainfall events, and drought spells. These circumstances are particularly worrisome for typical thin soils of the Mediterranean environment. This study reports the effect of permanent grass cover in vineyards to maintain or increase soil organic matter and soil moisture. The influence of natural and simulated rainfalls on soils was studied. A comparison between minimum tillage (MT) and permanent grass cover crop (GC) of the temperate grass Brachypodium distachyon was done. Water infiltration, water holding capacity, organic carbon sequestration and protection from extreme events, were considered in a sloping vineyard located in the south of Madrid, Spain. The MT is the most widely used cultivation method in the area. The tradition supports this management practice to capture and preserve water in soils. It creates small depressions that accumulate water and eventually improves water infiltration. This effect was acknowledged in summer after recent MT cultivation; however, it was only short-lived as surface roughness declined after rainfalls. Especially, intense rainfall events left the surface of bare soil sealed. Consequently, the effects depend on the season of the year. In autumn, a rainy season of the year, MT failed to enhance infiltration. On the contrary, B. distachyon acted as a physical barrier, produced more infiltration (22% increase) and fewer particles detachment, due to increased soil structure stability and soil organic matter (50% increase). The GC efficiently protected soil from high-intensity events (more than 2 mm min-1). Besides, soil moisture at 35 cm depth was enhanced with GC (9% more than tillage). On average, soil moisture in GC was not significantly different from MT. These effects of GC on soil conditions created local micro-environmental conditions that can be considered advantageous as a climate change adaptation strategy, because they improved water balance, maintained a sustainable level of soil organic matter, therefore organic nitrogen, all these factors crucial for improving wine quality.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hui Wang ◽  
Thomas W. Boutton ◽  
Wenhua Xu ◽  
Guoqing Hu ◽  
Ping Jiang ◽  
...  

2012 ◽  
Vol 46 (16) ◽  
pp. 8921-8927 ◽  
Author(s):  
José M. Fernández ◽  
Clément Peltre ◽  
Joseph M. Craine ◽  
Alain F. Plante

Sign in / Sign up

Export Citation Format

Share Document