Can assimilating snow monitoring information offset the adverse effects of precipitation data scarcity in hydrological modelling applications?

Author(s):  
Kian Abbasnezhadi ◽  
Alain N. Rousseau

<p>The applicability of the Canadian Precipitation Analysis products known as the Regional Deterministic Precipitation Analysis (CaPA-RDPA) for hydrological modelling in boreal watersheds in Canada, which are constrained with shortage of precipitation information, has been the subject of a number of recent studies. The northern and mid-cordilleran alpine, sub-alpine, and boreal watersheds in Yukon, Canada, are prime examples of such Nordic regions where any hydrological modelling application is greatly scrambled due to lack of accurate precipitation information. In the course of the past few years, proper advancements were tailored to resolve these challenges and a forecasting system was designed at the operational level for short- to medium-range flow and inflow forecasting in major watersheds of interest to Yukon Energy. This forecasting system merges the precipitation products from the North American Ensemble forecasting System (NAEFS) and recorded flows or reconstructed reservoir inflows into the HYDROTEL distributed hydrological model, using the Ensemble Kalman Filtering (EnKF) data assimilation technique. In order to alleviate the adverse effects of scarce precipitation information, the forecasting system also enjoys a snow data assimilation routine in which simulated snowpack water content is updated through a distributed snow correction scheme. Together, both data assimilation schemes offer the system with a framework to accurately estimate flow magnitudes. This robust system not only mitigates the adverse effects of meteorological data constrains in Yukon, but also offers an opportunity to investigate the hydrological footprint of CaPA-RDPA products in Yukon, which is exactly the motivation behind this presentation. However, our overall goal is much more comprehensive as we are trying to elucidate whether assimilating snow monitoring information in a distributed hydrological model could meet the flow estimation accuracy in sparsely gauged basins to the same extent that would be achieved through either (i) the application of precipitation analysis products, or (ii) expanding the meteorological network. A proper answer to this question would provide us with valuable information with respect to the robustness of the snow data assimilation routine in HYDROTEL and the intrinsic added-value of using CaPA-RDPA products in sparsely gauged basins of Yukon.</p>

Author(s):  
Antonio Parodi ◽  
Martina Lagasio ◽  
Agostino N. Meroni ◽  
Flavio Pignone ◽  
Francesco Silvestro ◽  
...  

AbstractBetween the 4th and the 6th of November 1994, Piedmont and the western part of Liguria (two regions in north-western Italy) were hit by heavy rainfalls that caused the flooding of the Po, the Tanaro rivers and several of their tributaries, causing 70 victims and the displacement of over 2000 people. At the time of the event, no early warning system was in place and the concept of hydro-meteorological forecasting chain was in its infancy, since it was still limited to a reduced number of research applications, strongly constrained by coarse-resolution modelling capabilities both on the meteorological and the hydrological sides. In this study, the skills of the high-resolution CIMA Research Foundation operational hydro-meteorological forecasting chain are tested in the Piedmont 1994 event. The chain includes a cloud-resolving numerical weather prediction (NWP) model, a stochastic rainfall downscaling model, and a continuous distributed hydrological model. This hydro-meteorological chain is tested in a set of operational configurations, meaning that forecast products are used to initialise and force the atmospheric model at the boundaries. The set consists of four experiments with different options of the microphysical scheme, which is known to be a critical parameterisation in this kind of phenomena. Results show that all the configurations produce an adequate and timely forecast (about 2 days ahead) with realistic rainfall fields and, consequently, very good peak flow discharge curves. The added value of the high resolution of the NWP model emerges, in particular, when looking at the location of the convective part of the event, which hit the Liguria region.


2019 ◽  
Vol 23 (9) ◽  
pp. 3823-3841 ◽  
Author(s):  
Maria Laura Poletti ◽  
Francesco Silvestro ◽  
Silvio Davolio ◽  
Flavio Pignone ◽  
Nicola Rebora

Abstract. Forecasting flash floods some hours in advance is still a challenge, especially in environments made up of many small catchments. Hydrometeorological forecasting systems generally allow for predicting the possibility of having very intense rainfall events on quite large areas with good performances, even with 12–24 h of anticipation. However, they are not able to predict the exact rainfall location if we consider portions of a territory of 10 to 1000 km2 as the order of magnitude. The scope of this work is to exploit both observations and modelling sources to improve the discharge prediction in small catchments with a lead time of 2–8 h. The models used to achieve the goal are essentially (i) a probabilistic rainfall nowcasting model able to extrapolate the rainfall evolution from observations, (ii) a non-hydrostatic high-resolution numerical weather prediction (NWP) model and (iii) a distributed hydrological model able to provide a streamflow prediction in each pixel of the studied domain. These tools are used, together with radar observations, in a synergistic way, exploiting the information of each element in order to complement each other. For this purpose observations are used in a frequently updated data assimilation framework to drive the NWP system, whose output is in turn used to improve the information as input to the nowcasting technique in terms of a predicted rainfall volume trend; finally nowcasting and NWP outputs are blended, generating an ensemble of rainfall scenarios used to feed the hydrological model and produce a prediction in terms of streamflow. The flood prediction system is applied to three major events that occurred in the Liguria region (Italy) first to produce a standard analysis on predefined basin control sections and then using a distributed approach that exploits the capabilities of the employed hydrological model. The results obtained for these three analysed events show that the use of the present approach is promising. Even if not in all the cases, the blending technique clearly enhances the prediction capacity of the hydrological nowcasting chain with respect to the use of input coming only from the nowcasting technique; moreover, a worsening of the performance is observed less, and it is nevertheless ascribable to the critical transition between the nowcasting and the NWP model rainfall field.


2020 ◽  
Author(s):  
Bart van Osnabrugge ◽  
Maarten Smoorenburg ◽  
Remko Uijlenhoet ◽  
Albrecht Weerts

<p>There is an ongoing trend in hydrological forecasting towards both spatially distributed (gridded) models, ensemble forecasting and data assimilation techniques to improve forecasts’ initial states. While in the last years those different aspects have been investigated separately, there are only few studies where the three techniques are combined: ensemble forecasts with state updating of a gridded hydrological model. Additionally, the studies that have addressed this combination of techniques either focus on a small area, a short study period, or both. We here aim to fill this knowledge gap with a 20-year data assimilation and ensemble reforecast experiment with a high resolution gridded hydrological model (wflow_hbv, 1200x1200m) of the full Rhine basin (160 000 km<sup>2</sup>). To put the impact of state updating in an operational forecasting context, the data assimilation results were compared with AR post-processing as used by the Dutch Forecasting Centre (WMCN).</p><p>This data assimilation and reforecast experiment was conducted for the twelve main tributaries of the river Rhine. The effect on forecast skill of state updating with the Asynchronous Ensemble Kalman Filter (AEnKF) and AR error correction are compared for medium-term (15-day) forecasts over a period of 20 years (1996 to 2016). State updating improved the initial state for all subbasins and resulted in lasting skill score increase. AR also improved the forecast skill, but the forecast skill with AR did not always converge towards the uncorrected model skill, and instead can deteriorate for longer lead times. AR correction outperformed the AEnKF state updating for the first two days, after which state updating became more effective and outperformed AR. We conclude that state updating has more potential for medium-term hydrological forecasts than the operational AR procedure.</p><p>Further research is underway to investigate the importance, or added value, of long-term reforecasts as opposed to studies covering a short time span which are often more feasible and therefore more often found in literature.</p>


RBRH ◽  
2019 ◽  
Vol 24 ◽  
Author(s):  
Karena Quiroz Jiménez ◽  
Walter Collischonn ◽  
Rodrigo Cauduro Dias de Paiva

ABSTRACT In this work, the data assimilation method namely ensemble Kalman filter (EnKF) is applied to the Tocantins River basin. This method assimilates streamflow results by using a distributed hydrological model. The performance of the EnKF is also compared with an empirical assimilation method for hourly time intervals, in which two applications based on information transfer from gauged to ungauged sites and real time streamflow forecasting are assessed. In the first application, both assimilation methods are able to transfer streamflow to ungauged sites, obtaining better results when more than one station located upstream or downstream of the basin are gauged. In the second application, integration of a real time forecast model with EnKF is able to absorb errors at the beginning of the forecast. Therefore, a greater efficiency in the Nash-Sutcliffe index for the first 144 hours in advance in relation to its counterpart without assimilation is obtained. Finally, a comparison between both data assimilation methods shows a greater advantage for the EnKF in long lead times.


2020 ◽  
Vol 21 (8) ◽  
pp. 1865-1887
Author(s):  
A. Senatore ◽  
S. Davolio ◽  
L. Furnari ◽  
G. Mendicino

AbstractReliable reanalysis products can be exploited to drive mesoscale numerical models and generate high-resolution reconstructions of high-impact weather events. Within this framework, regional weather and climate models may greatly benefit from the recent release of the ERA5 product, an improvement to the ERA-Interim dataset. In this study, two different convection-permitting models driven by these two reanalysis datasets are used to reproduce three heavy precipitation events affecting a Mediterranean region. Moreover, different sea surface temperature (SST) initializations are tested to assess how higher-resolution SST fields improve the simulation of high-impact events characterized by strong air–sea interactions. Finally, the coupling with a distributed hydrological model allows evaluating the impact at the ground, specifically assessing the possible added value of the ERA5 dataset for the high-resolution simulation of extreme hydrometeorological events over the Calabria region (southern Italy). Results, based on the comparison against multiple-source precipitation observations, show no clear systematic benefit to using the ERA5 dataset; moreover, intense convective activity can introduce uncertainties masking the signal provided by the boundary conditions of the different reanalyses. The effect of the high-resolution SST fields is even more difficult to detect. The uncertainties propagate and amplify along the modeling chain, where the spatial resolution increases up to the hydrological model. Nevertheless, even in very small catchments, some of the experiments provide reasonably accurate results, suggesting that an ensemble approach could be suitable to cope with uncertainties affecting the overall meteo-hydrological chain, especially for small catchments.


2010 ◽  
Vol 10 (12) ◽  
pp. 2713-2725 ◽  
Author(s):  
M. G. Grillakis ◽  
I. K. Tsanis ◽  
A. G. Koutroulis

Abstract. An atmospheric depression passed over northwest Slovenia on 18 September 2007 producing precipitation that exceeded 300 mm/d and a 100-year return period runoff in Zelezniki tributary. The resultant flash flood in the study area, which consisted of five basins, was simulated with the conceptual distributed hydrological model HBV (Hydrologiska Byråns Vattenbalansavdelning). The model was calibrated and validated with past rainfall – runoff events with satisfactory results producing values of Nash – Sutcliffe coefficient between 0.82 and 0.96. The validated model was applied to the flash flood case with stream gauge failure, driven by spatiotemporal precipitation produced by a set of rain gauges and radar data. The model delivered satisfactory results on three out of five basin outlets while the other two had stream gauge failure during the event. The internal basin dynamics of the most affected area in Zelezniki, was successfully tested in eight of its sub-basins by comparing the peak discharges with the ones evaluated by the slope-conveyance method during a detailed intensive post event campaign. The added value of this method is in the reduced uncertainty in peak discharge estimation and event interpretation and in an effective flash flood warning system for the study area when it is combined with radar nowcasts and operational high resolution short range weather forecast models.


2015 ◽  
Vol 30 (6) ◽  
pp. 1491-1520 ◽  
Author(s):  
Ben A. Moser ◽  
William A. Gallus ◽  
Ricardo Mantilla

Abstract The effect of introducing radar data assimilation into the WRF Model to improve high-resolution rainfall forecasts that are used for flash flood forecasting is analyzed. The authors selected 12 heavy rainfall events and performed two WRF 24-h simulations that produced quantitative precipitation forecasts (QPFs) for each, one using the standard configuration in forecast mode (QPF-Cold) and one using radar data assimilated at initialization (QPF-Hot). Simulation outputs are compared with NWS stage IV QPEs for storm placement, area over threshold coverage, and equitable threat scores. The two QPF products and stage IV data are used to force the distributed hydrological model CUENCAS for the same 800 km × 800 km domain centered over Iowa (and to calculate peak flows across the river network). The hydrological model responses to the three products are compared in terms of spatial location and flood intensity. In general, QPF-Hot outperformed QPF-Cold in replicating stage IV QPE statistics. However, QPF-Hot was too wet in the first 2 h of the event, and storms created by the radar-assimilation techniques dissipated quickly, with rainfall forecasts resembling QPF-Cold after 12 h. Flash flooding predicted by CUENCAS using QPF-Hot was more consistent with stage IV in terms of placement and intensity; however, results were not consistent for all events evaluated. The most encouraging result is that expected flash flooding was indeed predicted in all 12 cases using QPF-Hot and not QPF-Cold even though placement and intensity were not a perfect match. The initial results of this study indicate that radar assimilation improves WRF’s ability to capture the character of storms, promising more accurate guidance for flash flood warnings.


Sign in / Sign up

Export Citation Format

Share Document