Lake Constance sediments recovered using novel piston coring system

Author(s):  
Ulrich Harms ◽  
Ulli Raschke ◽  
Antje Schwalb ◽  
Volker Wittig

<p>Key archives in environmental and past climate research are buried in soft sediment but investigations are often hampered by the lack of continuous, complete and undisturbed samples. We have developed the new core-drilling instrument Hipercorig to overcome these issues and we have tested this tool successfully on the perialpine Lakes Mondsee and Constance at up to 204 m water depths and down to 64 m core length.</p><p>Hipercorig comprises a hydraulically hammered down-the-hole piston coring system capable to reach up to 100 m core length in up to 200 m water depths. The well-proven piston system ensures high-quality intact cores while the hydraulic hammer drive allows penetrating hard-layers such as sand, gravel or tephra. The piston-hammer system, casing string and ground plate is connected via Kevlar ropes to a coring rig and deployment is controlled via underwater cameras. For lake, estuarine and shallow marine projects buoyance and working space is provided through a barge with four anchors and winches. The complete system is consisting of modular elements to be shipped in four 20-foot-containers including two boats and outboard motors. Hipercorig allows for about 10 m rate of penetration per shift and produces 7.5 cm cores in 2 m long core runs.</p><p>A first deployment on Lake Mondsee to initially test and modify Hipercorig recovered 64 m sediment core from glacial tills. A follow on shake-down cruise on Lake Constance served as deep-water trial and to sample so far unearthed pre-Holocene strata below about 12 m sediment depth. Coring was performed in summer 2019 in 204 m water depth, 2 km SSW of Hagnau, Germany. The site is located close to the deepest part of this basin with best possible preservation of a continuous and undisturbed depositional record. Two sediment cores of 24 and 20.5 mblf were retrieved and complemented by three 2-m-long surface cores. The uppermost 11 m of sediments consist of Holocene lacustrine clays with increasing intercalations of silt, while late Quaternary glacial sands dominate below 11 m. The piston coring device was modified to allow for penetrating these rigid sand layers, but the sands slowed down core recovery and caused core loss of ~15 cm at the end of each core run but overlapping coring was used to compensate the loss. While samples for microbiology have been taken immediately, core opening, description, and sampling will be performed at Bern University, Switzerland, in October 2019.</p><p>Currently Hipercorig receives final upgrades for safety and flexibility so that the whole system will be available from spring 2020 on for scientific coring projects on a non-for-profit base to teams with funded research projects. They will have to raise transport and operations costs as well as a maintenance fee that will serve to sustain the tool. The German Scientific Earth Probing Consortium GESEP will provide an oversight board to prioritize projects and support projects in implementation.</p>

2021 ◽  
Vol 71 ◽  
pp. 113-123
Author(s):  
Yulinar Firdaus ◽  
◽  
Ali Albab ◽  
Subarsyah Subarsyah ◽  
Dida Kusnida ◽  
...  

Sub-Bottom Profiling (SBP) records and results of geochemical analysis of 12 surficial sediment cores from various water depths collected from the offshore Waropen Basin-Papua are presented. Presence of gas is clearly observed on sub-bottom profiler records. Shallow gas was identified through acoustic response due to gas accumulation and gas escape on sub-bottom profiles. Acoustic evidences of gas accumulations within near surface geology consist of high amplitude reflections and associated acoustic blanking, gas plumes and morphological features like pockmarks. Total organic carbon analysis of 12 surface sediment cores varies between 0.5% to 1.3% which indicate that the sediments have an abundance of organic matters. Gas chromatographic analysis of hydrocarbon composition detected only methane, a biogenic origin of shallow gas. Acoustic and geochemical evidence in the Waropen Basin indicates extensive shallow gas accumulations in the Late Quaternary sediments, some trapped within these deposits and some escape from seabed into the water column which then created a high distribution of pockmarks.


1998 ◽  
Vol 27 ◽  
pp. 275-280 ◽  
Author(s):  
Akira Nishimura ◽  
Toru Nakasone ◽  
Chikara Hiramatsu ◽  
Manabu Tanahashi

Based on sedimenlological and micropaleontological work on three sediment cores collected at about 167° Ε in the western Ross Sea, Antarctica, and accelerator mass spectrometer l4C ages of organic carbon, we have reconstructed environmental changes in the area during the late Quaternary. Since 38 ka BP at latest, this area was a marine environment with low productivity. A grounded ice sheet advanced and loaded the sediments before about 30-25 ka BP. After 25 ka BP, the southernmost site (76°46'S) was covered by floating ice (shelf ice), preventing deposition of coarse terrigenous materials and maintaining a supply of diatom tests and organic carbon until 20 ka BP. The northernmost site (74°33'S) was in a marine environment with a moderate productivity influenced by shelf ice/ice sheet after about 20 ka BP. Since about 10 ka BP, a sedimentary environment similar to the present-day one has prevailed over this area.


2017 ◽  
Vol 11 (3) ◽  
pp. 1265-1282 ◽  
Author(s):  
Graham L. Gilbert ◽  
Stefanie Cable ◽  
Christine Thiel ◽  
Hanne H. Christiansen ◽  
Bo Elberling

Abstract. The Zackenberg River delta is located in northeast Greenland (74°30′ N, 20°30′ E) at the outlet of the Zackenberg fjord valley. The fjord-valley fill consists of a series of terraced deltaic deposits (ca. 2 km2) formed during relative sea-level (RSL) fall. We investigated the deposits using sedimentological and cryostratigraphic techniques together with optically stimulated luminescence (OSL) dating. We identify four facies associations in sections (4 to 22 m in height) exposed along the modern Zackenberg River and coast. Facies associations relate to (I) overriding glaciers, (II) retreating glaciers and quiescent glaciomarine conditions, (III) delta progradation in a fjord valley, and (IV) fluvial activity and niveo-aeolian processes. Pore, layered, and suspended cryofacies are identified in two 20 m deep ice-bonded sediment cores. The cryofacies distribution, together with low overall ground-ice content, indicates that permafrost is predominately epigenetic in these deposits. Fourteen OSL ages constrain the deposition of the cored deposits to between approximately 13 and 11 ka, immediately following deglaciation. The timing of permafrost aggradation was closely related to delta progradation and began following the subaerial exposure of the delta plain (ca. 11 ka). Our results reveal information concerning the interplay between deglaciation, RSL change, sedimentation, permafrost aggradation, and the timing of these events. These findings have implications for the timing and mode of permafrost aggradation in other fjord valleys in northeast Greenland.


1998 ◽  
Vol 27 ◽  
pp. 285-289 ◽  
Author(s):  
S. G. Moreton ◽  
J. L. Smellie

Quaternary deposits in six sediment cores from the Scotia Sea, Antarctica, were examined for the presence of volcanic ash layers. The cores were recovered from water depths of 3369-4025 m. Altogether, 23 ash layers were found, 18 of which have been investigated by electron-probe microanalysis. Deception Island is identified as the source of all the ash layers analyzed. The upper ash layer in each core can be correlated across all six cores, over a distance of -100 km, on the basis of its unusual bimodal composition, major oxide geochemistry and stratigraphie position. Two other ash layers can also be correlated between several of the cores.


2008 ◽  
Vol 45 (3) ◽  
pp. 267-285 ◽  
Author(s):  
Thian Hundert ◽  
David J.W. Piper

The sedimentary record on continental slopes has the potential to preserve a record of glacial retreat on the adjacent continental shelf. The glacial history of the southwestern part of the Scotian Shelf is poorly known. Air-gun and high-resolution sparker profiles and numerous sediment cores up to 10 m long have been used to determine the character of sedimentation on the southwestern Scotian Slope since the last glacial maximum (LGM). Seismic-reflection profiles show that glacial till was deposited at shallow depths on the upper continental slope, and correlation to dated piston cores farther downslope show that this till dates from the LGM. Slope sedimentation at this time was dominated by local ice and deposited as plume fallout and turbidites. Progressively increasing importance of red-brown sediment derived from glacial supply to Laurentian Channel indicates retreat of ice from the shelf edge and diminishing supply of proglacial sediment from the calving embayment in the mid-Scotian Shelf. With the termination of distal proglacial sediment supply, the sedimentation rate diminished rapidly and hemipelagic sedimentation prevailed through the Holocene.


Radiocarbon ◽  
2018 ◽  
Vol 61 (1) ◽  
pp. 83-99
Author(s):  
Daidu Fan ◽  
Shuai Shang ◽  
George Burr

ABSTRACTWe describe two coastal paleosols recovered in sediment cores from the Oujiang Delta, Southeast China. These provide useful benchmarks for past sea level change on the East China Sea coast. Radiocarbon (14C) dates on charcoal and plant matter show that one formed during Marine Isotope Stage 3 (MIS 3) and was exposed for perhaps 20 ka, during the Last Glacial Maximum. The other formed in the Early Holocene and was briefly exposed, during a period of fluctuating sea level. Similar paleosols have been described from the Changjiang (Yangtze) Delta, and at many other sites from the East China Sea. The MIS 3 paleosol records a regional relative sea level of about –27 m at the end of MIS 3. While this value is consistent with other paleo sea level estimates for the East China Sea region, it is much higher than predicted by eustatic sea level estimates.


Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 633-642 ◽  
Author(s):  
O Sivan ◽  
B Lazar ◽  
E Boaretto ◽  
Y Yechieli ◽  
B Herut

In this study, we aim to characterize the main processes controlling 14CDIC concentrations in porewater at the shallow shelf (water depth less than 120 m) off the Mediterranean coast of Israel. At these water depths, we expected to find evidence for seawater penetration toward the coast, since this area was flooded by seawater only some 18,000 yr ago (the end of the Last Glacial period).Measurements of the chemical composition (14CDIC) and stable carbon isotopic composition (δ13CDIC) were performed in several sediment cores (40–250 cm long) at water depths between 6 and 115 m. At water depths of 60 m, represented by a 2.5-m-long sediment core, the porewater 14CDIC levels (85–87 pMC) were lower than the corresponding sediment values in each layer (92–95 pMC), mainly due to the oxidation of relatively old organic matter (about 70 pMC) with no evidence to advection. In contrast, sediment cores from water depths shallower than 50 m showed only slight anaerobic oxidation and high 14CDIC values of approximately 100 pMC, indicating possible downward advection. These geochemical observations support the perception that the penetration of seawater into the coastal aquifer occurs at the shallow water zone (<50 m), while further verification by deeper cores is required.


2001 ◽  
Vol 56 (3) ◽  
pp. 401-410 ◽  
Author(s):  
Bryan Shuman ◽  
Jennifer Bravo ◽  
Jonathan Kaye ◽  
Jason A. Lynch ◽  
Paige Newby ◽  
...  

AbstractSediment cores collected along a transect in Crooked Pond, southeastern Massachusetts, provide evidence of water-level changes between 15,000 cal yr B.P. and present. The extent of fine-grained, detrital, organic accumulation in the basin, inferred from sediment and pollen stratigraphies, varied over time and indicates low water levels between 11,200 and 8000 cal yr B.P. and from ca. 5300 to 3200 cal yr B.P. This history is consistent with the paleohydrology records from nearby Makepeace Cedar Swamp and other sites from New England and eastern Canada and with temporal patterns of regional changes in effective soil moisture inferred from pollen data. The similarities among these records indicate that (1) regional conditions were drier than today when white pine (Pinus strobus) grew abundantly in southern New England (11,200 to 9500 cal yr B.P.); (2) higher moisture levels existed between 8000 and 5500 cal yr B.P., possibly caused by increased meridonal circulation as the influence of the Laurentide ice sheet waned; and (3) drier conditions possibly contributed to the regional decline in hemlock (Tsuga) abundances at 5300 cal yr B.P. Although sea-level rise may have been an influence, moist climatic conditions during the late Holocene were the primary reason for a dramatic rise in water-table elevations.


2001 ◽  
Vol 56 (3) ◽  
pp. 308-321 ◽  
Author(s):  
Colm Ó Cofaigh ◽  
Julian A. Dowdeswell ◽  
Carol J. Pudsey

AbstractSediment cores from the continental rise west of the Antarctic Peninsula and the northern Weddell and Scotia Seas were investigated for their ice-rafted debris (IRD) content by lithofacies logging and counting of particles >0.2 cm from core x-radiographs. The objective of the study was to determine if there are iceberg-rafted units similar to the Heinrich layers of the North Atlantic that might record periodic, widespread catastrophic collapse of basins within the Antarctic Ice Sheet during the Quaternary. Cores from the Antarctic Peninsula margin contain prominent IRD-rich units, with maximum IRD concentrations in oxygen isotope stages 1, 5, and 7. However, the greater concentration of IRD in interglacial stages is the result of low sedimentation rates and current winnowing, rather than regional-scale episodes of increased iceberg rafting. This is also supported by markedly lower mass accumulation rates (MAR) during interglacial periods versus glacial periods. Furthermore, thinner IRD layers within isotope stages 2–4 and 6 cannot be correlated between individual cores along the margin. This implies that the ice sheet over the Antarctic Peninsula did not undergo widespread catastrophic collapse along its western margin during the late Quaternary (isotope stages 1–7). Sediment cores from the Weddell and Scotia Seas are characterized by low IRD concentrations throughout, and the IRD signal generally appears to be of limited regional significance with few strong peaks that can be correlated between cores. Tentatively, this argues against pervasive, rapid ice-sheet collapse around the Weddell embayment over the last few glacial cycles.


Sign in / Sign up

Export Citation Format

Share Document