Critical minerals in the European seas: The project GeoERA-MINDeSEA

Author(s):  
Javier Gonzalez ◽  
Teresa Medialdea ◽  
Henrik Schiellerup ◽  
Irene Zananiri ◽  
Pedro Ferreira ◽  
...  

<p>The oceans and seas cover more than 70% of the planet, representing a promising new frontier for mineral resources exploration, and an enormous challenge for science and technology. Communities are demanding actions to address global climate change, and the necessary high- and green-technologies required for a transition from a carbon-based to green-energy-based world. The global ocean is at the core of these issues. The seabed mineral resources host the largest reserves on Earth for some critical metals like cobalt, tellurium, manganese, and the rare earth elements, critical for Industry. But seabed geology and ecosystems are widely unexplored, and new geological and environmental studies are required to address the impacts of potential mining activities. In addition, a regulatory framework for minerals extraction and marine spatial planning are necessary for seabed mining sector development.</p><p>The pan-European seas cover about 15 millions square kilometres in the Arctic and Atlantic oceans and the Mediterranean, Baltic, and Black seas, from shallow waters up to 6000 m water depth. Spanning a large diversity of environments and resource settings, including high and low temperature hydrothermal deposits, phosphorites, cobalt-rich ferromanganese crusts, and manganese nodules, deep-sea deposits are particularly attractive for their polymetallic nature with high contents of rare and critical metals. Moreover, shallow-water resources, like marine placer deposits, represent another source for many critical metals and gems. The GeoERA-MINDeSEA[1]  project is compiling data and genetic models for all these deposit types based on extensive studies, carried out previously, which include geophysical surveys, dredging stations, underwater photography and ROV surveys, and mineralogical, geochemical, and isotopic studies.</p><p>The preliminary MINDeSEA results show the potential of the pan-European seas for critical metals, and the enormous gaps of information covering vast marine sectors. More than 600 mineral occurrences are reported in the MINDeSEA database. Seamounts and banks in the Macaronesia sector (Portugal and Spain) and the Arctic ridges (Norway, Denmark, Iceland) show a high potential for Fe-Mn crusts, rich in energy-critical elements like Co but also Te, REEs, and Mn. Fe-Mn crusts are accompanied by phosphorites on the seafloor of continental shelves and slopes along the western continental margins. Seafloor polymetallic sulphides and metalliferous sediments precipitating from hot hydrothermal solutions and plumes are forming today in the Azores Islands (Portugal), the Arctic (Norway, Denmark) and, the Mediterranean volcanic arcs (Italy and Greece). They are among the most important marine resources for Cu, Zn, Ag, and Au. In addition, hydrothermal deposits may contain economic grades of Co, Sn, Ba, In, Bi, Te, Ga, and Ge. Placer deposits of chemically resistant and durable minerals have been discovered on shallow-water settings (<50 m water depth on estuaries, deltas, beaches) linked to the weathering of onshore rocks and ore deposits from the Variscan Belt (UK, France, Portugal, Spain). Finally, shallow-water concretions and nodules from the Arctic, Baltic, and Black Sea represent potential targets for metals exploration and environmental studies.</p><div><br><div> <p>[1] This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166</p> <p> </p> </div> </div>

1995 ◽  
Vol 13 ◽  
pp. 1-28
Author(s):  
Anette Mønsted Pedersen

Six foraminiferal assemblage zones and 6 subzones have been identified in the boreholes TWB-12, P-1 and E-1. The zones cover the interval from the Pliocene to the Middle Pleistocene. In TWB-12 and E-1 the Pliocene /Pleistocene boundary is placed at the first common occurrence of the species Elphidium oregonense. This species was not found in P-1, and the boundary is here, tentatively, placed above the last local occurrence of Cibicides grossus. The palaeoecological variations indicated by the Pleistocene assemblages, suggest several oscillations both in water depth and in palaeotemperature. A cold, shallow water interval with Elphidium oregonense at the Pliocene/Pleistocene boundary is followed by a Early Pleistocene warm, deep water interval with a high content of the genera Stainforthia and Bulimina. These deposits are probably from the warm Tiglian stage. The succeeding Early Pleistocene fauna! assemblages indicate a cold, upwards shallowing environment, and in this interval the arctic species Elphidiella gorbunovi often has a short ranged occurrence. The fauna! assemblages of the overlying deposits are characterized by the species Elphidium ustulatum and Elphidium albiumbilicatum, and indicates nearshore/ deltaic conditions. This part of the sequence probably includes the Early /Middle Pleistocene boundary. The uppermost assemblages in the examined sequence indicate arctic, shallow water conditions. They are, probably, of Saalian age, and are referred to Middle Pleistocene.


2021 ◽  
Vol 7 (7) ◽  
pp. 567
Author(s):  
Eyal Ben-Dor Cohen ◽  
Micha Ilan ◽  
Oded Yarden

Marine sponges harbor a diverse array of microorganisms and the composition of the microbial community has been suggested to be linked to holo-biont health. Most of the attention concerning sponge mycobiomes has been given to sponges present in shallow depths. Here, we describe the presence of 146 culturable mycobiome taxa isolated from mesophotic niche (100 m depth)-inhabiting samples of Agelas oroides, in the Mediterranean Sea. We identify some potential in vitro interactions between several A. oroides-associated fungi and show that sponge meso-hyl extract, but not its predominantly collagen-rich part, is sufficient to support hyphal growth. We demonstrate that changes in the diversity of culturable mycobiome constituents occur following sponge transplantation from its original mesophotic habitat to shallow (10 m) waters, where historically (60 years ago) this species was found. We conclude that among the 30 fungal genera identified as associated with A. oroides, Aspergillus, Penicillium and Trichoderma constitute the core mycobiome of A. oroides, and that they persist even when the sponge is transplanted to a suboptimal environment, indicative of the presence of constant, as well as dynamic, components of the sponge mycobiome. Other genera seemed more depth-related and appeared or disappeared upon host’s transfer from 100 to 10 m.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sebastian Teichert ◽  
Martin G. J. Löder ◽  
Ines Pyko ◽  
Marlene Mordek ◽  
Christian Schulbert ◽  
...  

AbstractThere is an increasing number of studies reporting microplastic (MP) contamination in the Arctic environment. We analysed MP abundance in samples from a marine Arctic ecosystem that has not been investigated in this context and that features a high biodiversity: hollow rhodoliths gouged by the bivalve Hiatella arctica. This bivalve is a filter feeder that potentially accumulates MPs and may therefore reflect MP contamination of the rhodolith ecosystem at northern Svalbard. Our analyses revealed that 100% of the examined specimens were contaminated with MP, ranging between one and 184 MP particles per bivalve in samples from two water depths. Polymer composition and abundance differed strongly between both water depths: samples from 40 m water depth showed a generally higher concentration of MPs and were clearly dominated by polystyrene, samples from 27 m water depth were more balanced in composition, mainly consisting of polyethylene, polyethylene terephthalate, and polypropylene. Long-term consequences of MP contamination in the investigated bivalve species and for the rhodolith bed ecosystem are yet unclear. However, the uptake of MPs may potentially impact H. arctica and consequently its functioning as ecosystem engineers in Arctic rhodolith beds.


2021 ◽  
Author(s):  
Li Zhang ◽  
Lei Xing ◽  
Mingyu Dong ◽  
Weimin Chen

Abstract Articulated pusher barge vessel is a short-distance transport vessel with good economic performance and practicability, which is widely used in the Yangtze River of China. In this present work, the resistance performance of articulated pusher barge vessel in deep water and shallow water was studied by model tests in the towing tank and basin of Shanghai Ship and Shipping Research Institute. During the experimental investigation, the articulated pusher barge vessel was divided into three parts: the pusher, the barge and the articulated pusher barge system. Firstly, the deep water resistance performance of the articulated pusher barge system, barge and the pusher at design draught T was studied, then the water depth h was adjusted, and the shallow water resistance at h/T = 2.0, 1.5 and 1.2 was tested and studied respectively, and the difference between deep water resistance and shallow water resistance at design draught were compared. The results of model tests and analysis show that: 1) in the study of deep water resistance, the total resistance of the barge was larger than that of the articulated pusher barge system. 2) for the barge, the shallow water resistance increases about 0.4–0.7 times at h/T = 2.0, 0.5–1.1 times at h/T = 1.5, and 0.7–2.3 times at h/T = 1.2. 3) for the pusher, the shallow water resistance increases about 1.0–0.4 times at h/T = 2.7, 1.2–0.9 times at h/T = 2.0, and 1.7–2.4 times at h/T = 1.6. 4) for the articulated pusher barge system, the shallow water resistance increases about 0.2–0.3 times at h/T = 2.0, 0.5–1.3 times at h/T = 1.5, and 1.0–3.5 times at h/T = 1.2. Furthermore, the water depth Froude number Frh in shallow water was compared with the changing trend of resistance in shallow water.


2011 ◽  
Vol 2 (2) ◽  
pp. 320-333
Author(s):  
F. Van den Abeele ◽  
J. Vande Voorde

The worldwide demand for energy, and in particular fossil fuels, keeps pushing the boundaries of offshoreengineering. Oil and gas majors are conducting their exploration and production activities in remotelocations and water depths exceeding 3000 meters. Such challenging conditions call for enhancedengineering techniques to cope with the risks of collapse, fatigue and pressure containment.On the other hand, offshore structures in shallow water depth (up to 100 meter) require a different anddedicated approach. Such structures are less prone to unstable collapse, but are often subjected to higherflow velocities, induced by both tides and waves. In this paper, numerical tools and utilities to study thestability of offshore structures in shallow water depth are reviewed, and three case studies are provided.First, the Coupled Eulerian Lagrangian (CEL) approach is demonstrated to combine the effects of fluid flowon the structural response of offshore structures. This approach is used to predict fluid flow aroundsubmersible platforms and jack-up rigs.Then, a Computational Fluid Dynamics (CFD) analysis is performed to calculate the turbulent Von Karmanstreet in the wake of subsea structures. At higher Reynolds numbers, this turbulent flow can give rise tovortex shedding and hence cyclic loading. Fluid structure interaction is applied to investigate the dynamicsof submarine risers, and evaluate the susceptibility of vortex induced vibrations.As a third case study, a hydrodynamic analysis is conducted to assess the combined effects of steadycurrent and oscillatory wave-induced flow on submerged structures. At the end of this paper, such ananalysis is performed to calculate drag, lift and inertia forces on partially buried subsea pipelines.


2014 ◽  
Vol 30 (02) ◽  
pp. 66-78
Author(s):  
Mark Pavkov ◽  
Morabito Morabitob

Experiments were conducted at the U.S. Naval Academy's Hydromechanics Laboratory to determine the effect of finite water depth on the resistance, heave, and trim of two different trimaran models. The models were tested at the same length to water depth ratios over a range of Froude numbers in the displacement speed regime. The models were also towed in deep water for comparison. Additionally, the side hulls were adjusted to two different longitudinal positions to investigate possible differences resulting from position. Near critical speed, a large increase in resistance and sinkage was observed, consistent with observations of conventional displacement hulls. The data from the two models are scaled up to a notional 125-m length to illustrate the effects that would be observed for actual ships similar in size to the U.S. Navy's Independence Class Littoral Combat Ship. Faired plots are developed to allow for rapid estimation of shallow water effect on trimaran resistance and under keel clearance. An example is provided.


1976 ◽  
Vol 1 (15) ◽  
pp. 161 ◽  
Author(s):  
Taizo Hayashi ◽  
Masujiro Shirai

The added masses of large tankers berthing to dolphins are studied both theoretically and experimentally. The movements of large vessels in shallow water in the directions normal to their planes of symmetry cause counterflows of appreciable velocities under the hulls. The inertia of these counter-flows is shown to have an important effect on the added masses of the vessels. A theoretical formula is derived to determine the mass factor of an ocean vessel in shallow water as a function of the ratio Draught/Water- depth, the Froude number of the vessel and the coefficient of head loss of the counter-flow under the hull. Experiment is made to determine the mass factor. Comparison:, between the theory and the experiment shows a good agreement.


Author(s):  
Tim Bunnik ◽  
Rene´ Huijsmans

During the last few years there has been a strong growth in the availability and capabilities of numerical wave tanks. In order to assess the accuracy of such methods, a validation study was carried out. The study focuses on two types of numerical wave tanks: 1. A numerical wave tank based a non-linear potential flow algorithm. 2. A numerical wave tank based on a Volume of Fluid algorithm. The first algorithm uses a structured grid with triangular elements and a surface tracking technique. The second algorithm uses a structured, Cartesian grid and a surface capturing technique. Validation material is available by means of waves measured at multiple locations in two different model test basins. The first method is capable of generating waves up to the break limit. Wave absorption is therefore modeled by means of a numerical beach and not by mean of the parabolic beach that is used in the model basin. The second method is capable of modeling wave breaking. Therefore, the parabolic beach in the model test basin can be modeled and has also been included. Energy dissipation therefore takes place according to physics which are more related to the situation in the model test basin. Three types of waves are generated in the model test basin and in the numerical wave tanks. All these waves are generated on basin scale. The following waves are considered: 1. A scaled 100-year North-Sea wave (Hs = 0.24 meters, Tp = 2.0 seconds) in deep water (5 meters). 2. A scaled operational wave (Hs = 0.086 meters, Tp = 1.69 seconds) at intermediate water depth (0.86 meters) generated by a flap-type wave generator. 3. A scaled operational wave (Hs = 0.046 meters, Tp = 1.2 seconds) in shallow water (0.35 meters) generated by a piston-type wave generator. The waves are generated by means of a flap or piston-type wave generator. The motions of the wave generator in the simulations (either rotational or translational) are identical to the motions in the model test basin. Furthermore, in the simulations with intermediate water depth, the non-flat contour of the basin bottom (ramp) is accurately modeled. A comparison is made between the measured and computed wave elevation at several locations in the basin. The comparison focuses on: 1. Reflection characteristics of the model test basin and the numerical wave tanks. 2. The accuracy in the prediction of steep waves. 3. Second order effects like set-down in intermediate and shallow water depth. Furthermore, a convergence study is presented to check the grid independence of the wave tank predictions.


1961 ◽  
Vol 33 (11) ◽  
pp. 1674-1674
Author(s):  
K. Hunkins ◽  
H. Kutschale ◽  
T. Herron

Author(s):  
I.I. Kovlekov

The article studies various aspects of the highwall mining systems applicability for the development of productive sands in terms of the occurrence conditions as well as the mining and technical parameters of placer deposits. The harsh climatic conditions of the Arctic zone and the specific properties of frozen sands impose additional requirements on the operation of the mining complex. Positive and negative aspects of the practical application of mining complexes been analysed with reference to the development of precious metals and gemstones deposits. The most promising mining sites have been identified, where the use of highwall mining systems is technologically and economically feasible. Commercial mining of reserves in the boundary zones in high walls of depleted fields and in thin unconventional seams will substantially expand the mineral resource base of mining companies. A promising trend of this technology development is discussed that includes backfilling of the mined-out space in order to reduce the loss of mineral resources. The ice-rock mixture is proposed as the backfill material, which significantly reduces the unit cost of these operations. A practical case of this technology implementation is described for the development of substandard sands of a placer deposit in the Far North conditions. The possibility of developing the reserves of tin placer deposits on the Arctic shelf using the highwall mining systems has been identified as the most promising direction of scientific and practical research for the development of the mining industry in the region.


Sign in / Sign up

Export Citation Format

Share Document