The Daytime and Nighttime Mapped Whistler Plasmapause Observed by DEMETER

Author(s):  
Chao-Yen Chen ◽  
Jann-Yenq Liu

<p>This paper investigates the plasmapause positions in the ionosphere by measurement of the whistler count probed by DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite in the daytime at 1030 LT (local time) and the nighttime at 2230 LT during 2005-2010.  The whistler finds the plasmapause position which can be clearly allocated in both daytime and nighttime.  We examine the nighttime/daytime plasmapause in various longitudes, solar activities, seasons, and geomagnetic actives.  Results show that the daytime plasmapause appears in the equatorward side of the nighttime one.  Both the daytime and nighttime plasmapause are sensitive to solar activity, which move equatorward form the low to high solar activity in the study period.  The seasonal variation of the plasmapause are rather random and insignificant.  During magnetic disturbed condition, the plasmapause tend to move equatorward.</p>

2021 ◽  
Author(s):  
Kristin Vielberg ◽  
Armin Corbin ◽  
Jürgen Kusche ◽  
Chao Xiong ◽  
Claudia Stolle

Abstract The availability of in-situ neutral and electron densities along the orbit of the satellite missions GRACE and CHAMP provide a good opportunity to study the ionosphere-thermosphere (IT) system. The aim of this paper is (1) to use these data sets, to study the IT density relation empirically via correlation properties for different conditions depending on solar activity, geomagnetic latitude, and local time and (2) to verify whether these relations are consistent with the output of the TIE-GCM model of the thermosphere and ionosphere. Our results show that the correlations of electron and neutral densities strongly depend on magnetic local time (MLT) with a minimal correlation between 6-9h MLT, e.g., every 131 days for CHAMP around 400km altitude and every 160 days for GRACE around 500km. During low solar activity, the correlation of modeled and measured densities agrees well for both satellites. On the contrary, we note that the correlations between the modeled values are higher, especially during high solar activity, where the difference between correlations of modeled and measured densities is about 0.2. We suggest that the reason for this misalignment might be related to the poor representation of the equatorial density anomaly in the model especially during high solar activity. We believe our results will be useful for studies that aim at assimilating electron densities into a physical model to improve the prediction of neutral densities, since the skill of data assimilation depends to a large extent on the representation of the correlation between both densities.


2015 ◽  
Vol 33 (8) ◽  
pp. 997-1006 ◽  
Author(s):  
P. Pavan Chaitanya ◽  
A. K. Patra ◽  
N. Balan ◽  
S. V. B. Rao

Abstract. In this paper, we analyze daytime observations of the critical frequencies of the F2 (foF2) and F3 (foF3) layers based on ionosonde observations made from Indian low latitudes close to the magnetic equator and study their local time, seasonal, planetary-scale variations (including the solar rotation effect), and solar activity dependence. Given the occurrence of the F3 layer, which has remarkable local time, seasonal and solar activity dependences, variations in foF2 have been evaluated. Local time variations in foF2 and foF3 show noon "bite-out" in all seasons and in all solar activity conditions, which are attributed to vertically upward plasma transport by the zonal electric field and meridional neutral wind. Comparison of observed foF2 with those of the IRI-2012 model clearly shows that the model values are always higher than observed values and the largest difference is observed during noontime owing to the noon bite-out phenomenon. Peak frequency of the F layer (foF2 / foF3), however, is found to have better agreement with IRI-2012 model. Seasonal variations of foF2 and foF3 show stronger asymmetry at the solstices than at the equinoxes. The strong asymmetry at the solstice is attributed to the asymmetry in the meridional neutral wind with a secondary contribution from E × B drifts, and the relatively weak asymmetry observed at the equinox is attributed to the asymmetry in E × B drifts. Variations in foF2 and foF3 with solar flux clearly show the saturation effect when F10.7 exceeds ~ 120 sfu, which is different from that of the mid-latitudes. Irrespective of solar flux, both foF2 and foF3 in summer, however, are found to be remarkably lower than those observed in other seasons. Variations in foF2 show dominant periods of ~ 27, ~ 16 and ~ 6 days. Intriguingly, amplitudes of ~ 27-day variations in foF2 are found to be maximum in low solar activity (LSA), moderate in medium solar activity (MSA) and minimum in high solar activity (HSA), while the amplitudes of ~ 27-day variations in F10.7 are minimum in LSA, moderate in MSA and maximum in HSA. These results are presented and discussed in light of current observational and model-based knowledge on the variations of low-latitude foF2 and foF3.


2021 ◽  
Vol 44 ◽  
pp. 85-91
Author(s):  
V.N. Obridko ◽  
◽  
D.D. Sokoloff ◽  
V.V. Pipin ◽  
A.S. Shibalova ◽  
...  

In addition to the well-known 11-year cycle, longer and shorter characteristic periods can be isolated in variations of the parameters of helio-geophysical activity. Periods of about 36 and 60 years were revealed in variations of the geomagnetic activity and an approximately 60-year periodicity, in the evolution of correlation between the pressure in the lower atmosphere and the solar activity. Similar periods are observed in the cyclonic activity. Such periods in the parameters of the solar activity are difficult to identify because of a limited database available; however, they are clearly visible in variations of the asymmetry of the sunspot activity in the northern and southern solar hemispheres. In geomagnetic variations, one can also isolate oscillations with the characteristic periods of 5-6 years (QSO) and 2-3 years (QBO). We have considered 5-6-year periodicities (about half the main cycle) observed in variations of the sunspot numbers and the intensity of the dipole component of the solar magnetic field. A comparison with different magnetic dynamo models allowed us to determine the possible origin of these oscillations. A similar result can be reproduced in a dynamo model with nonlinear parameter variations. In this case, the activity cycle turns out to be anharmonic and contains other periodicities in addition to the main one. As a result of the study, we conclude that the 5-6-year activity variations are related to the processes of nonlinear saturation of the dynamo in the solar interior. Quasi-biennial oscillations are actually separate pulses related little to each other. Therefore, the methods of the spectral analysis do not reveal them over large time intervals. They are a direct product of local fields, are generated in the near-surface layers, and are reliably recorded only in the epochs of high solar activity.


2014 ◽  
Vol 32 (2) ◽  
pp. 69-75 ◽  
Author(s):  
W. R. Coley ◽  
R. A. Stoneback ◽  
R. A. Heelis ◽  
M. R. Hairston

Abstract. The Ion Velocity Meter (IVM), a part of the Coupled Ion Neutral Dynamic Investigation (CINDI) instrument package on the Communication/Navigation Outage Forecast System (C/NOFS) spacecraft, has made over 5 yr of in situ measurements of plasma temperatures, composition, densities, and velocities in the 400–850 km altitude range of the equatorial ionosphere. These measured ion velocities are then transformed into a coordinate system with components parallel and perpendicular to the geomagnetic field allowing us to examine the zonal (horizontal and perpendicular to the geomagnetic field) component of plasma motion over the 2009–2012 interval. The general pattern of local time variation of the equatorial zonal ion velocity is well established as westward during the day and eastward during the night, with the larger nighttime velocities leading to a net ionospheric superrotation. Since the C/NOFS launch in April 2008, F10.7 cm radio fluxes have gradually increased from around 70 sfu to levels in the 130–150 sfu range. The comprehensive coverage of C/NOFS over the low-latitude ionosphere allows us to examine variations of the topside zonal ion velocity over a wide level of solar activity as well as the dependence of the zonal velocity on apex altitude (magnetic latitude), longitude, and solar local time. It was found that the zonal ion drifts show longitude dependence with the largest net eastward values in the American sector. The pre-midnight zonal drifts show definite solar activity (F10.7) dependence. The daytime drifts have a lower dependence on F10.7. The apex altitude (magnetic latitude) variations indicate a more westerly flow at higher altitudes. There is often a net topside subrotation at low F10.7 levels, perhaps indicative of a suppressed F region dynamo due to low field line-integrated conductivity and a low F region altitude at solar minimum.


2021 ◽  
Vol 13 (22) ◽  
pp. 4559
Author(s):  
Marjolijn Adolfs ◽  
Mohammed Mainul Hoque

With the availability of fast computing machines, as well as the advancement of machine learning techniques and Big Data algorithms, the development of a more sophisticated total electron content (TEC) model featuring the Nighttime Winter Anomaly (NWA) and other effects is possible and is presented here. The NWA is visible in the Northern Hemisphere for the American sector and in the Southern Hemisphere for the Asian longitude sector under solar minimum conditions. During the NWA, the mean ionization level is found to be higher in the winter nights compared to the summer nights. The approach proposed here is a fully connected neural network (NN) model trained with Global Ionosphere Maps (GIMs) data from the last two solar cycles. The day of year, universal time, geographic longitude, geomagnetic latitude, solar zenith angle, and solar activity proxy, F10.7, were used as the input parameters for the model. The model was tested with independent TEC datasets from the years 2015 and 2020, representing high solar activity (HSA) and low solar activity (LSA) conditions. Our investigation shows that the root mean squared (RMS) deviations are in the order of 6 and 2.5 TEC units during HSA and LSA period, respectively. Additionally, NN model results were compared with another model, the Neustrelitz TEC Model (NTCM). We found that the neural network model outperformed the NTCM by approximately 1 TEC unit. More importantly, the NN model can reproduce the evolution of the NWA effect during low solar activity, whereas the NTCM model cannot reproduce such effect in the TEC variation.


Author(s):  
Dung Nguyen Thanh ◽  
Minh Le Huy ◽  
Christine Amory-Mazaudier ◽  
Rolland Fleury ◽  
Susumu Saito ◽  
...  

This paper presents the variations of the rate of change of Total Electron Content (TEC) index (ROTI), characterizing the occurrence of ionospheric plasma irregularities over Vietnam and neighboring countries in the Southeast Asian region using the continuous GPS data during the 2008-2018 period. The results showed that the occurrence of strong ROTI in all stations is maximum in equinox months March/April and September/October and depends on solar activity. The ROTI is weak during periods of low solar activity and strong during periods of high solar activity. There is an asymmetry between the two equinoxes. During maximum and declining phases of 2014-2016, occurrence rates in March equinox are larger than in September equinox, but during the descending period of 2010-2011, the occurrence rates in September equinox at almost all stations are larger than in March equinox. The correlation coefficients between the monthly occurrence rate of irregularities and the F10.7 solar index at the stations in the equatorward EIA crest region are higher than at those in the magnetic equatorial and the poleward EIA crest regions. The irregularity occurrence is high in the pre-midnight sector, maximum between 2000 LT to 2200 LT. The maximum irregularity occurrence is located around 4-5° degrees in latitude equator-ward away from the anomaly crests.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012034
Author(s):  
V M Efimov ◽  
K V Efimov ◽  
D A Polunin ◽  
V Y Kovaleva

Abstract When analyzing a 1D time series, it is traditional to represent it as the sum of the trend, cyclical components and noise. The trend is seen as an external influence. However, the impact can be not only additive, but also multiplicative. In this case, not only the level changes, but also the amplitude of the cyclic components. In the PCA-Seq method, a generalization of SSA, it is possible to pre-standardize fragments of a time series to solve this problem. The algorithm is applied to the Anderson series – a sign alternating version of the well-known Wolf series, reflecting the 22-year Hale cycle. The existence of this cycle is not disputed at high solar activity, but there are doubts about the constancy of its period at this time, as well as its existence during the epoch of low solar activity. The processing of the series by the PCA-Seq method revealed clear oscillations fluctuations of almost constant amplitude with an average period of 21.9 years, and it was found that the correlation of these oscillations with the time axis for 300 years does not differ significantly from zero. This confirms the hypothesis of the existence of 22-year oscillations in solar activity even at its minima, like the Maunder minimum.


Sign in / Sign up

Export Citation Format

Share Document