scholarly journals OMERE: A Long-Term Observatory of Soil and Water Resources, in Interaction with Agricultural and Land Management in Mediterranean Hilly Catchments

Author(s):  
Jérôme Molénat ◽  
Damien Raclot ◽  
Rim Zitouna ◽  
Jean Albergel ◽  
Marc Voltz ◽  
...  

<p>The hydrology of the Mediterranean region is affected by global changes such as climate and land use changes. In rural areas, changes in farming practices and landscape management can be the main drivers of changes in water cycles and in matter transport associated with hydrological fluxes, such as contaminants and sediments. The process underlying these changes can be slow, such as in land use or contaminant dynamics, or infrequent over time, such as erosion. Understanding these processes and their relationship requires long-term observations to capture slow dynamics or infrequent events. In this context, we present the Mediterranean agro-hydrological observatory OMERE (Mediterranean observatory of the rural environment and water) by explaining the observation strategy and by emphasizing how this strategy and associated research have contributed to a better understanding of the impact of agricultural and land management on mass flows in Mediterranean farmed headwater catchments.<br><br>The OMERE observatory is made up of two agricultural catchments, one in the north of Tunisia and the other in the south of France, accounting for for the diversity of agricultural and ecosystem situations in hilly Mediterranean areas. The OMERE observatory belongs to the French national network OZCAR, dedicated to the observation of the critical zone. The observation strategy is motivated by monitoring the flow of water, sediments and contaminants and hydrological and climatic variables at different spatial scales from cultivated plots and landscape elements to the catchment scale. These measurements were made with fine temporal resolution on a long-term scale and examining land use, agricultural practices and soil surface characteristics. The long-term observation strategy aims to support multidisciplinary integrative research to elucidate the conditions that improve soil and water management and the provision of ecosystem services in the Mediterranean context of rain-fed agriculture. The observatory addressed three scientific questions: (i) better understand water flows, erosion and contaminants, in particular pesticides, and their natural and anthropogenic factors in the short and long term; (ii) analyze the overall effects of agriculture and land management on mass flows at different scales, from the plot to the watershed or the landscape; and (iii) develop new scenarios for sustainable agricultural management and better delivery of ecosystem services. Some of the scientific progresses driven by the questions drawn from the OMERE observatory are presented.</p><p><em>Voltz, M., and A. Albergel. 2002. OMERE: Observatoire Méditerranéen de l’Environnement Rural et de l’Eau- Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d’Observatoire de Recherche en Environnement. Minist. Français Rech., Paris</em></p><p><em>Molénat, J., Raclot, D., Zitouna R., ...., Albergel, J., and Voltz M., 2018, OMERE: A Long-Term Observatory of Soil and Water Resources, in Interaction with Agricultural and Land Management in Mediterranean Hilly Catchments, Vadose Zone J., 17:180086. doi:10.2136/vzj2018.04.0086</em></p>

2018 ◽  
Vol 17 (1) ◽  
pp. 180086 ◽  
Author(s):  
J. Molénat ◽  
D. Raclot ◽  
R. Zitouna ◽  
P. Andrieux ◽  
G. Coulouma ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


2016 ◽  
Vol 20 (7) ◽  
pp. 2877-2898 ◽  
Author(s):  
Hannes Müller Schmied ◽  
Linda Adam ◽  
Stephanie Eisner ◽  
Gabriel Fink ◽  
Martina Flörke ◽  
...  

Abstract. When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.


2018 ◽  
Vol 10 (10) ◽  
pp. 3556 ◽  
Author(s):  
Gang Liu ◽  
Lu Shi ◽  
Kevin Li

This paper develops a lexicographic optimization model to allocate agricultural and non-agricultural water footprints by using the land area as the influencing factor. An index known as the water-footprint-land density (WFLD) index is then put forward to assess the impact and equity of the resulting allocation scheme. Subsequently, the proposed model is applied to a case study allocating water resources for the 11 provinces and municipalities in the Yangtze River Economic Belt (YREB). The objective is to achieve equitable spatial allocation of water resources from a water footprint perspective. Based on the statistical data in 2013, this approach starts with a proper accounting for water footprints in the 11 YREB provinces. We then determined an optimal allocation of water footprints by using the proposed lexicographic optimization approach from a land area angle. Lastly, we analyzed how different types of land uses contribute to allocation equity and we discuss policy changes to implement the optimal allocation schemes in the YREB. Analytical results show that: (1) the optimized agricultural and non-agricultural water footprints decrease from the current levels for each province across the YREB, but this decrease shows a heterogeneous pattern; (2) the WFLD of 11 YREB provinces all decline after optimization with the largest decline in Shanghai and the smallest decline in Sichuan; and (3) the impact of agricultural land on the allocation of agricultural water footprints is mainly reflected in the land use structure of three land types including arable land, forest land, and grassland. The different land use structures in the upstream, midstream, and downstream regions lead to the spatial heterogeneity of the optimized agricultural water footprints in the three YREB segments; (4) In addition to the non-agricultural land area, different regional industrial structures are the main reason for the spatial heterogeneity of the optimized non-agricultural water footprints. Our water-footprint-based optimal water resources allocation scheme helps alleviate the water resources shortage pressure and achieve coordinated and balanced development in the YREB.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1247 ◽  
Author(s):  
Sikhululekile Ncube ◽  
Annie Visser ◽  
Lindsay Beevers

River systems provide diverse ecosystem services (ES), such as flood regulation (regulating), fresh water (provisioning), nutrient cycling (supporting), and recreation (cultural), among others. The construction of infrastructure (e.g., for hydropower, irrigation) enhances the delivery of tangible ES for example food or energy (generally provisioning) to meet human needs. However, the resulting change to river flows threatens both the ecological health of a river and its ability to provide intangible but vital ES, for example those which support the delivery of other services. Understanding these supporting ES processes in river systems is essential to fully recognise the impact of water resources development on ES delivery. Whilst approaches for assessing instream supporting ES are under development, to date few provide quantitative methods for assessing delivery. Thus, this paper sets out a framework for the assessment of instream supporting ES using hydroecological modelling. It links supporting ES delivery to fluvial hydrological indicators through the use of ecologically relevant hydrological indices and macroinvertebrate flow preferences. The proposed framework is demonstrated on the Beas River basin (Western Himalayas, India), and is flexible enough to be transferred to a basin-wide model, thereby allowing ES relationships to be accounted for in basin-wide water resources planning.


Hydrology ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
Sekela Twisa ◽  
Shija Kazumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Understanding the variation in the hydrological response of a basin associated with land use changes is essential for developing management strategies for water resources. The impact of hydrological changes caused by expected land use changes may be severe for the Wami river system, given its role as a crucial area for water, providing food and livelihoods. The objective of this study is to examine the influence of land use changes on various elements of the hydrological processes of the basin. Hybrid classification, which includes unsupervised and supervised classification techniques, is used to process the images (2000 and 2016), while CA–Markov chain analysis is used to forecast and simulate the 2032 land use state. In the current study, a combined approach—including a Soil and Water Assessment Tool (SWAT) model and Partial Least Squares Regression (PLSR)—is used to explore the influences of individual land use classes on fluctuations in the hydrological components. From the study, it is evident that land use has changed across the basin since 2000 (which is expected to continue in 2032), as well as that the hydrological effects caused by land use changes were observed. It has been found that the major land use changes that affected hydrology components in the basin were expansion of cultivation land, built-up area and grassland, and decline in natural forests and woodland during the study period. These findings provide baseline information for decision-makers and stakeholders concerning land and water resources for better planning and management decisions in the basin resources’ use.


Sign in / Sign up

Export Citation Format

Share Document