Streamwater time series coupled to groundwater age tracers informs the hydrologic partitioning of rainfall, the transient age distributions and their associated reactivity

Author(s):  
Jean Marçais ◽  
Jean-Raynald de Dreuzy ◽  
Louis A. Derry ◽  
Luca Guillaumot ◽  
Aurélie Guillou ◽  
...  

<p><span>Intricated variabilities of stream water quality and of stream discharge can provide key insights of integrated processes occurring at the watershed scale. Yet it is difficult to disentangle the effects of hydrologic vs biogeochemical processes occurring in the different compartments of the critical zone, as well as the mixing associated to it. Here we developed a </span><span><em>quasi</em></span><span>-2D hillslope scale model able to represent the partitioning of precipitation into real evapotranspiration, shallow subsurface lateral flow and deeper groundwater flow circulation. Enhanced with an advective-dispersive particle tracking algorithm, the model delineates the age distributions of the associated flow lines and the resulting transient streamwater transit time distributions (TTDs). To relate geochemical datasets to TTDs, we connected the biogeochemical reactivity, spatially, to the compartment (regolith vs bedrock) and, in time, to the residence time of the different flowpaths.</span></p><p><span>We hypothesized that streamwater time series datasets (discharge and dissolved silica) and </span><span><em>in-situ</em></span><span> groundwater age tracers (CFCs) would build minimal but orthogonal information upon these partitioning and tracing processes. Applied to 4 different catchments in Brittany, we were able to represent the seasonal dynamics of evapotranspiration, discharge and dissolved silica (DSi) in rivers as well as CFC concentrations in aquifers once key characteristics of the watershed have been informed (evapotranspiration ratio, amount of water stored in the regolith and in the aquifer, bedrock transmissivity, weathering capacity). We found evapotranspiration ratio (ET/P) in average equal to 54% in agreement with independent, large-scale estimates (derived from the French climate Surfex model). The model also provides estimates for typical bedrock transmissivities around 5.10</span><sup><span>-4</span></sup><span> m</span><sup><span>2</span></sup><span>/s, mean transit times around 10 years with an important spatial and temporal variability, a</span><span>mount of stored water in average equal to 160 mm (resp. 3.10 m) in the regolith (resp. bedrock) and DSi weathering capacity of 0.3 mg/L/yr, which is in accordance with previous studies carried in crystalline contexts like Brittany [Leray et al. 2012, Kolbe et al. 2016, Marçais et al. 2018]. Simplifying the transient behavior of the catchment model with some analytical considerations enabled to directly inform these key characteristics with some properties of the measured datasets (e.g. average low flow rate, mean and standard deviation of the DSi time series, average CFC apparent ages). </span></p><p><span>This shows that these datasets can be used as standalone tracers and provide powerful indicators of critical zone characteristics described above. This also opens new avenues to spatialize the reactivity in the deep critical zone, and to integrate the information provided by different datasets (e.g. climatic forcing, discharge, solute concentrations, groundwater age tracers) measured in streams and in groundwater. Such modeling exercice paves the way toward an interdisciplinary understanding of the critical zone.</span></p>

2014 ◽  
Vol 8 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Nicoleta Ionac ◽  
Monica Matei

Abstract The present paper investigates on the spatial and temporal variability of maximum and minimum air-temperatures in Romania and their connection to the European climate variability. The European climate variability is expressed by large scale parameters, which are roughly represented by the geopotential height at 500 hPa (H500) and air temperature at 850 hPa (T850). The Romanian data are represented by the time series at 22 weather stations, evenly distributed over the entire country’s territory. The period that was taken into account was 1961-2010, for the summer and winter seasons. The method of empirical orthogonal functions (EOF) has been used, in order to analyze the connection between the temperature variability in Romania and the same variability at a larger scale, by taking into consideration the atmosphere circulation. The time series associated to the first two EOF patterns of local temperatures and large-scale anomalies were considered with regard to trends and shifts in their mean values. The non- Mann-Kendall and Pettitt parametric tests were used in this respect. The results showed a strong correlation between T850 parameter and minimum and maximum air temperatures in Romania. Also, the ample variance expressed by the first EOF configurations suggests a connection between local and large scale climate variability.


2010 ◽  
Vol 14 (12) ◽  
pp. 2367-2382 ◽  
Author(s):  
K. Stahl ◽  
H. Hisdal ◽  
J. Hannaford ◽  
L. M. Tallaksen ◽  
H. A. J. van Lanen ◽  
...  

Abstract. Streamflow observations from near-natural catchments are of paramount importance for detection and attribution studies, evaluation of large-scale model simulations, and assessment of water management, adaptation and policy options. This study investigates streamflow trends in a newly-assembled, consolidated dataset of near-natural streamflow records from 441 small catchments in 15 countries across Europe. The period 1962–2004 provided the best spatial coverage, but analyses were also carried out for longer time periods (with fewer stations), starting in 1932, 1942 and 1952. Trends were calculated by the slopes of the Kendall-Theil robust line for standardized annual and monthly streamflow, as well as for summer low flow magnitude and timing. A regionally coherent picture of annual streamflow trends emerged, with negative trends in southern and eastern regions, and generally positive trends elsewhere. Trends in monthly streamflow for 1962–2004 elucidated potential causes for these changes, as well as for changes in hydrological regimes across Europe. Positive trends were found in the winter months in most catchments. A marked shift towards negative trends was observed in April, gradually spreading across Europe to reach a maximum extent in August. Low flows have decreased in most regions where the lowest mean monthly flow occurs in summer, but vary for catchments which have flow minima in winter and secondary low flows in summer. The study largely confirms findings from national and regional scale trend analyses, but clearly adds to these by confirming that these tendencies are part of coherent patterns of change, which cover a much larger region. The broad, continental-scale patterns of change are mostly congruent with the hydrological responses expected from future climatic changes, as projected by climate models. The patterns observed could hence provide a valuable benchmark for a number of different studies and model simulations.


2015 ◽  
Vol 143 (3) ◽  
pp. 828-844 ◽  
Author(s):  
Jerôme Schalkwijk ◽  
Harmen J. J. Jonker ◽  
A. Pier Siebesma ◽  
Fred C. Bosveld

Abstract Results are presented of two large-eddy simulation (LES) runs of the entire year 2012 centered at the Cabauw observational supersite in the Netherlands. The LES is coupled to a regional weather model that provides the large-scale information. The simulations provide three-dimensional continuous time series of LES-generated turbulence and clouds, which can be compared in detail to the extensive observational dataset of Cabauw. The LES dataset is available from the authors on request. This type of LES setup has a number of advantages. First, it can provide a more statistical approach to the study of turbulent atmospheric flow than the more common case studies, since a diverse but representative set of conditions is covered, including numerous transitions. This has advantages in the design and evaluation of parameterizations. Second, the setup can provide valuable information on the quality of the LES model when applied to such a wide range of conditions. Last, it also provides the possibility to emulate observation techniques. This might help detect limitations and potential problems of a variety of measurement techniques. The LES runs are validated through a comparison with observations from the observational supersite and with results from the “parent” large-scale model. The long time series that are generated, in combination with information on the spatial structure, provide a novel opportunity to study time scales ranging from seconds to seasons. This facilitates a study of the power spectrum of horizontal and vertical wind speed variance to identify the dominant variance-containing time scales.


2010 ◽  
Vol 7 (4) ◽  
pp. 5769-5804 ◽  
Author(s):  
K. Stahl ◽  
H. Hisdal ◽  
J. Hannaford ◽  
L. M. Tallaksen ◽  
H. A. J. van Lanen ◽  
...  

Abstract. Streamflow observations from near-natural catchments are of paramount importance for detection and attribution studies, evaluation of large-scale model simulations, and assessment of water management, adaptation and policy options. This study investigates streamflow trends in a newly-assembled, consolidated dataset of near-natural streamflow records from 441 small catchments in 15 countries across Europe. The period 1962–2004 provided the best spatial coverage, but analyses were also carried out for longer time periods (with fewer stations), starting in 1932, 1942 and 1952. Trends were calculated by the slopes of the Kendall-Theil robust line for standardized annual and monthly streamflow, as well as for summer low flow and low flow timing. A regionally coherent picture of annual streamflow trends emerged, with negative trends in southern and eastern regions, and generally positive trends elsewhere (especially in northern latitudes). Trends in monthly streamflow for 1962–2004 elucidated potential causes for these changes, as well as other changes observed in hydrological regimes across Europe. Positive trends were found in the winter months in most catchments. A marked shift towards negative trends was observed in April, gradually spreading across Europe to reach a maximum extent in August. Low flows have decreased in most regions where the lowest mean monthly flow occurs in summer, but vary for catchments which have flow minima in winter and secondary low flows in summer. The study largely confirms findings from national and regional scale trend analyses, but clearly adds to these by confirming that these tendencies are part of coherent patterns of change, which cover a much larger region. The broad, continental-scale patterns of change are congruent with the hydrological responses expected from future climatic changes, as projected by climate models. The patterns observed could hence provide a valuable benchmark for a number of different studies and model simulations.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3067
Author(s):  
Robyn Horan ◽  
Nathan J. Rickards ◽  
Alexandra Kaelin ◽  
Helen E. Baron ◽  
Thomas Thomas ◽  
...  

The increasing impact of anthropogenic interference on river basins has facilitated the development of the representation of human influences in large-scale models. The representation of groundwater and large reservoirs have realised significant developments recently. Groundwater and reservoir representation in the Global Water Availability Assessment (GWAVA) model have been improved, critically, with a minimal increase in model complexity and data input requirements, in keeping with the model’s applicability to regions with low-data availability. The increased functionality was assessed in two highly anthropogenically influenced basins. A revised groundwater routine was incorporated into GWAVA, which is fundamentally driven by three input parameters, and improved the simulation of streamflow and baseflow in the headwater catchments such that low-flow model skill increased 33–67% in the Cauvery and 66–100% in the Narmada. The existing reservoir routine was extended and improved the simulation of streamflow in catchments downstream of major reservoirs, using two calibratable parameters. The model performance was improved between 15% and 30% in the Cauvery and 7–30% in the Narmada, with the daily reservoir releases in the Cauvery improving significantly between 26% and 164%. The improvement of the groundwater and reservoir routines in GWAVA proved successful in improving the model performance, and the inclusions allowed for improved traceability of simulated water balance components. This study illustrates that improvement in the representation of human–water interactions in large-scale models is possible, without excessively increasing the model complexity and input data requirements.


2021 ◽  
Author(s):  
Harpreet Kaur ◽  
Maarten Buijsman

<p>In this study, we investigate the seasonal and interannual variability of internal tides in the global ocean using a Hybrid Coordinate Ocean Model (HYCOM) and altimetry data. The variability of internal tides is caused by the time varying stratification, mesoscale activity, large-scale shifts in amphidromic points, and changes in ice cover. The variation in the background fields generates the non-phase locked internal tides which are non-stationary. Non-stationary internal tides are less predictable than stationary tides, complicating regional model forcing with remote internal tide signals and the separation of internal tides from mesoscales. We will use 6 years of steric SSH extracted from a global HYCOM simulation with a horizontal resolution of 8 km and 32 layers to study the variability of internal tides. Our objective is to analyze the spatial and temporal variability of the amplitude and phase of the diurnal and semidiurnal internal tides. The SSH time series will be divided into time segments with different durations. The least-squares harmonic analysis will be used to extract SSH amplitude and phase for M2, K1, O1, and S2 constituents for these time segments. It has been found that the stationary amplitude decreases with an increase in the duration of the time series. We will also use empirical orthogonal functions (EOF) analysis to determine the seasonal and interannual variability in the monthly-mean internal tide amplitude and phase. The global maps of the non-stationarity fraction for the internal tidal constituents will be shown for each season. These results will be compared with 25 years of satellite altimetry data to find out whether similar variance decay trends are observed in the altimetry data.</p>


2011 ◽  
Vol 12 (6) ◽  
pp. 1181-1204 ◽  
Author(s):  
Christel Prudhomme ◽  
Simon Parry ◽  
Jamie Hannaford ◽  
Douglas B. Clark ◽  
Stefan Hagemann ◽  
...  

Abstract This paper presents a new methodology for assessing the ability of gridded hydrological models to reproduce large-scale hydrological high and low flow events (as a proxy for hydrological extremes) as described by catalogues of historical droughts [using the regional deficiency index (RDI)] and high flows [regional flood index (RFI)] previously derived from river flow measurements across Europe. Using the same methods, total runoff simulated by three global hydrological models from the Water Model Intercomparison Project (WaterMIP) [Joint U.K. Land Environment Simulator (JULES), Water Global Assessment and Prognosis (WaterGAP), and Max Planck Institute Hydrological Model (MPI-HM)] run with the same meteorological input (watch forcing data) at the same spatial 0.5° grid was used to calculate simulated RDI and RFI for the period 1963–2001 in the same European regions, directly comparable with the observed catalogues. Observed and simulated RDI and RFI time series were compared using three performance measures: the relative mean error, the ratio between the standard deviation of simulated over observed series, and the Spearman correlation coefficient. Results show that all models can broadly reproduce the spatiotemporal evolution of hydrological extremes in Europe to varying degrees. JULES tends to produce prolonged, highly spatially coherent events for both high and low flows, with events developing more slowly and reaching and sustaining greater spatial coherence than observed—this could be due to runoff being dominated by slow-responding subsurface flow. In contrast, MPI-HM shows very high variability in the simulated RDI and RFI time series and a more rapid onset of extreme events than observed, in particular for regions with significant water storage capacity—this could be due to possible underrepresentation of infiltration and groundwater storage, with soil saturation reached too quickly. WaterGAP shares some of the issues of variability with MPI-HM—also attributed to insufficient soil storage capacity and surplus effective precipitation being generated as surface runoff—and some strong spatial coherence of simulated events with JULES, but neither of these are dominant. Of the three global models considered here, WaterGAP is arguably best suited to reproduce most regional characteristics of large-scale high and low flow events in Europe. Some systematic weaknesses emerge in all models, in particular for high flows, which could be a product of poor spatial resolution of the input climate data (e.g., where extreme precipitation is driven by local convective storms) or topography. Overall, this study has demonstrated that RDI and RFI are powerful tools that can be used to assess how well large-scale hydrological models reproduce large-scale hydrological extremes—an exercise rarely undertaken in model intercomparisons.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


Sign in / Sign up

Export Citation Format

Share Document