Free soil colloids and colloidal building units of soil aggregates

Author(s):  
Ni Tang ◽  
Nina Siebers ◽  
Erwin Klumpp

<p>Nanosized mineral particles and organic matter (<100 nm) ,as well as their associations, belong to the most important ingredients for the formation of the soil aggregate structure being a hierarchically organized system. Colloids (< 220 nm) including nanoparticles can be occluded as primary building units of soil aggregates. Nevertheless, a large proportion of these colloids is mobile and presents in the solution phase (as “free”) within the soil matrix. However, the differences between “free” and occluded colloids remain unclear.</p><p>Here, both occluded and free colloids were isolated from soil samples of an arable field with different clay contents (19% and 34%) using wet sieving and centrifugation. The release of occluded colloids from soil macroaggregates (>250 µm) was carried out with ultrasonic treatment at 1000 J mL<sup>-1</sup>. The free and occluded colloidal fractions were then characterized for their size-resolved elemental composition using flow field-flow fractionation inductively coupled plasma mass spectrometry and organic carbon detector (FFF-ICP-MS/OCD). In addition, selected samples were also subjected to transmission electron microscopy as well as pyrolysis field ionization mass spectrometry (Py-FIMS).</p><p>Both, free and occluded colloids were composed of three size fractions: nanoparticles <20 nm, medium-sized nanoparticles (20 nm–60 nm), and, fine colloids (60 nm–220 nm). The fine colloid fraction was the dominant size fraction in both free and occluded colloids, which mainly consist of organic carbon, Al, Si, and Fe, probably present as phyllosilicates and associations of Fe- and Al- (hydr)oxides and organic matter. However, the organic matter contents for all three size fractions were higher for the occluded colloids than for the free ones. The role of OM concentration and composition in these colloids will be discussed in the paper.</p>

2021 ◽  
Author(s):  
Ni Tang ◽  
Nina Siebers ◽  
Erwin Klumpp

<p>Soil colloids < 220 nm including nanoparticles (1-100 nm), mainly composed of mineral particles and organic matter (OM) as well as their associations, have been gradually recognized as primary building units of the hierarchically organized soil aggregate system. As these colloidal building units are normally occluded inside soil aggregates, we refer to them as occluded colloids. Meanwhile, a large proportion of soil colloids is free from aggregate occlusion and mobile in the soil matrix. These free colloids can potentially serve as carriers for adsorbed nutrients and contaminants, mediating their translocation in the subsurface. However, the differences between free and occluded colloids remain unclear.</p><p>Here, both occluded and free colloids were isolated from soil samples of an arable field with different clay contents. The occluded colloids were released from soil macroaggregates (>250 µm) with ultrasonic treatments. The free and occluded colloids were sequentially characterized for their size-resolved elemental composition using flow field-flow fractionation inductively coupled plasma mass spectrometry and organic carbon detector (FFF-ICP-MS/OCD). Besides, selected samples were also subjected to transmission electron microscopy (TEM) and pyrolysis field ionization mass spectrometry (Py-FIMS).</p><p>Both free and occluded colloids mainly consisted of three size fractions: the first size fraction (0.6–60 nm), the second sized fraction (60–170 nm), and the third size fraction (>170 nm). The first size fraction was dominated by organic carbon and Ca, which were likely to be present as Ca-bridged OM associations. The elemental composition of the second and third size fractions was similar, which mainly consisted of organic carbon, Al, Si, and Fe, indicating the presence of mineral-mineral or mineral-organic associations. However, the ratios of organic to inorganic components in each size fractions varied among colloidal samples. TEM-EDX revealed that particles from free colloids were mainly present as mineral-mineral associations, while particles from occluded colloids tended to be mineral-organic associations. The C and N analysis showed higher N contents and narrower C/N ratios in free colloids when compared with occluded ones, suggesting different OM compositions in free and occluded colloids. The Py-FIMS results suggested that alkyl aromatics, phenols, lignin monomers, and lipids were the major OM compound classes in both free and occluded colloids. The relative abundance of carbohydrates, amides, heterocyclic nitrogen, and nitriles were higher in occluded colloids, whereas suberin and free fatty acids were relatively abundant in free colloids. Moreover, thermograms of OM compounds showed that occluded colloids possessed a higher proportion of thermal stable fractions of OM compounds, while the proportion of thermal liable fractions of OM compounds was relatively higher in free colloids. Overall, shedding light on the differences between free and occluded colloids may help us to gain insight into soil aggregate formation.</p>


Soil Research ◽  
1986 ◽  
Vol 24 (2) ◽  
pp. 293 ◽  
Author(s):  
RC Dalal ◽  
RJ Mayer

Distribution of soil organic carbon in sand-, silt- and clay-size fractions during cultivation for periods ranging from 20 to 70 years was studied in six major soils used for cereal cropping in southern Queensland. Particle-size fractions were obtained by dispersion in water using cation exchange resin, sieving and sedimentation. In the soils' virgin state no single particle-size fraction was found to be consistently enriched as compared to the whole soil in organic C in all six soils, although the largest proportion (48%) of organic C was in the clay-size fraction; silt and sand-size fractions contained remaining organic C in equal amounts. Upon cultivation, the amounts of organic C declined from all particle-size fractions in most soils, although the loss rates differed considerably among different fractions and from the whole soil. The proportion of the sand-size fraction declined rapidly (from 26% to 12% overall), whereas that of the clay-size fraction increased from 48% to 61% overall. The proportion of silt-size organic C was least affected by cultivation in most soils. It was inferred, therefore, that the sand-size organic matter is rapidly lost from soil, through mineralization as well as disintegration into silt-size and clay-size fractions, and that the clay fraction provides protection for the soil organic matter against microbial and enzymic degradation.


2014 ◽  
Vol 9 (No. 3) ◽  
pp. 111-118 ◽  
Author(s):  
V. Šimanský ◽  
D. Bajčan

One of the most important binding agents for forming stable aggregates is a soil organic matter (SOM), which can be retained in various size fractions of aggregates. If aggregates are water-resistant, they retain more carbon. Therefore, the aim of this study was to evaluate the stability of aggregates and their ability of carbon sequestration in different soil types and soil management systems in Slovakian vineyards. The highest content of water-stable macro-aggregates (WSA<sub>ma</sub>) was determined in Cambisols, and the lowest in Fluvisols. The highest content of WSA<sub>ma</sub> (size fraction 0.5&ndash;3 mm) was determined in Chernozems, decreasing within the following sequence: Fluvisols &gt; Leptosols &gt; Cambisols &gt; Luvisols. The soil type had a statistically significant influence on the re-distribution of soil organic matter in size fractions of water-stable aggregates. The highest content of SOM in water-stable aggregates of the vineyards was determined in grassy strips in-between the vineyard rows in comparison to intensively cultivated rows of vineyard. The highest values of carbon sequestration capacity (CSC) in WSA<sub>ma</sub> were found in Cambisols &gt; Leptosols and the lowest values of CSC were in Fluvisols. The micro-aggregates represented a significant carbon reservoir for the intensively cultivated soils (rows of vineyard). On the other hand, increasing of macro-aggregates (size fraction 0.5&ndash;3 mm) was characteristic for grassland soils (between the rows of vineyard).


Soil Research ◽  
2018 ◽  
Vol 56 (6) ◽  
pp. 632 ◽  
Author(s):  
Kathryn Conrad ◽  
Ram C. Dalal ◽  
Ryosuke Fujinuma ◽  
Neal W. Menzies

Stabilisation and protection of soil organic carbon (SOC) in macroaggregates and microaggregates represents an important mechanism for the sequestration of SOC. Legume-based grass pastures have the potential to contribute to aggregate formation and stabilisation, thereby leading to SOC sequestration. However, there is limited research on the C and N dynamics of soil organic matter (SOM) fractions in deep-rooted legume leucaena (Leucaena leucocephala)–grass pastures. We assessed the potential of leucaena to sequester carbon (C) and nitrogen (N) in soil aggregates by estimating the origin, quantity and distribution in the soil profile. We utilised a chronosequence (0–40 years) of seasonally grazed leucaena stands (3–6 m rows), which were sampled to a depth of 0.3 m at 0.1-m intervals. The soil was wet-sieved for different aggregate sizes (large macroaggregates, >2000 µm; small macroaggregates, 250–2000 µm; microaggregates, 53–250 µm; and <53 µm), including occluded particulate organic matter (oPOM) within macroaggregates (>250 µm), and then analysed for organic C, N and δ13C and δ15N. Leucaena promoted aggregation, which increased with the age of the leucaena stands, and in particular the formation of large macroaggregates compared with grass in the upper 0.2 m. Macroaggregates contained a greater SOC stock than microaggregates, principally as a function of the soil mass distribution. The oPOM-C and -N concentrations were highest in macroaggregates at all depths. The acid nonhydrolysable C and N distribution (recalcitrant SOM) provided no clear distinction in stabilisation of SOM between pastures. Leucaena- and possibly other legume-based grass pastures have potential to sequester SOC through stabilisation and protection of oPOM within macroaggregates in soil.


2011 ◽  
Vol 35 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Flávio Adriano Marques ◽  
Márcia Regina Calegari ◽  
Pablo Vidal-Torrado ◽  
Peter Buurman

The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness) in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC) at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF) under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland) and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC) ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal), contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001) of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk density, exchangeable Al3+, Al saturation, ECEC and other parameters obtained by selective extraction were not suitable as predictors of TC and other C forms. Interactions between organic matter and poorly crystalline minerals, as indicated by oxalate-extractable Al, appear to be one of the possible organic matter protection mechanisms of these soils.


2016 ◽  
Vol 75 (2) ◽  
Author(s):  
Gergely Jakab ◽  
Judit Szabó ◽  
Zoltán Szalai ◽  
Erzsébet Mészáros ◽  
Balázs Madarász ◽  
...  

2009 ◽  
Vol 13 (8) ◽  
pp. 1485-1502 ◽  
Author(s):  
L. W. de Jonge ◽  
P. Moldrup ◽  
P. Schjønning

Abstract. Soil functions and their impact on health, economy, and the environment are evident at the macro scale but determined at the micro scale, based on interactions between soil micro-architecture and the transport and transformation processes occurring in the soil infrastructure comprising pore and particle networks and at their interfaces. Soil structure formation and its resilience to disturbance are highly dynamic features affected by management (energy input), moisture (matric potential), and solids composition and complexation (organic matter and clay interactions). In this paper we review and put into perspective preliminary results of the newly started research program "Soil-it-is" on functional soil architecture. To identify and quantify biophysical constraints on soil structure changes and resilience, we claim that new approaches are needed to better interpret processes and parameters measured at the bulk soil scale and their links to the seemingly chaotic soil inner space behavior at the micro scale. As a first step, we revisit the soil matrix (solids phase) and pore system (water and air phases), constituting the complementary and interactive networks of soil infrastructure. For a field-pair with contrasting soil management, we suggest new ways of data analysis on measured soil-gas transport parameters at different moisture conditions to evaluate controls of soil matrix and pore network formation. Results imply that some soils form sponge-like pore networks (mostly healthy soils in terms of agricultural and environmental functions), while other soils form pipe-like structures (agriculturally poorly functioning soils), with the difference related to both complexation of organic matter and degradation of soil structure. The recently presented Dexter et al. (2008) threshold (ratio of clay to organic carbon of 10 kg kg−1) is found to be a promising constraint for a soil's ability to maintain or regenerate functional structure. Next, we show the Dexter et al. (2008) threshold may also apply to hydrological and physical-chemical interface phenomena including soil-water repellency and sorption of volatile organic vapors (gas-water-solids interfaces) as well as polycyclic aromatic hydrocarbons (water-solids interfaces). However, data for differently-managed soils imply that energy input, soil-moisture status, and vegetation (quality of eluded organic matter) may be equally important constraints together with the complexation and degradation of organic carbon in deciding functional soil architecture and interface processes. Finally, we envision a road map to soil inner space where we search for the main controls of particle and pore network changes and structure build-up and resilience at each crossroad of biophysical parameters, where, for example, complexation between organic matter and clay, and moisture-induced changes from hydrophilic to hydrophobic surface conditions can play a role. We hypothesize that each crossroad (e.g. between organic carbon/clay ratio and matric potential) may control how soil self-organization will manifest itself at a given time as affected by gradients in energy and moisture from soil use and climate. The road map may serve as inspiration for renewed and multi-disciplinary focus on functional soil architecture.


Sign in / Sign up

Export Citation Format

Share Document