Surface deformation deduced from CGPS data in the eastern Betic External Zones (SE Spain). Implications on SHA

Author(s):  
Ivan Martin-Rojas ◽  
Alberto Sánchez-Alzola ◽  
Ivan Medina-Cascales ◽  
Maria Jose Borque ◽  
Pedro Alfaro ◽  
...  

<p>The Betic Cordillera (S Spain), located in the convergent plate boundary between Eurasia and Nubia, is an area of moderate seismicity. These plates converge at a rate of approximately 4 to 6 mm/yr in the NW-SE direction (see review by Nocquet, 2012). Between 2.7 to 3.9 mm/yr of present-day plate convergence is accommodated in N Africa. Active shortening must occur at rates ranging from 1.6 to 2.7±0.6 mm/year across the Algero-Balearic Basin and the SE Iberian Peninsula (Serpelloni et al., 2007; Pérez-Peña et al., 2010; Echeverría et al., 2013). In the Betic Cordillera, most of the deformation is concentrated in the Betic Internal Zones, while the Betic External zones are considered as a slow-strain area.</p><p>In SE of Spain onshore active deformation and seismicity are mainly located along the Eastern Betic Shear Zone (EBSZ), a major strike-slip tectonic corridor belonging to the Betic Internal Zones. Regional and local geodetic studies indicate that the EBSZ is absorbing between 0.2 and 1.3 mm/yr (Serpelloni et al., 2007; Pérez-Peña et al., 2010; Echeverría et al., 2013; Borque et al., 2019), i.e. only a portion of regional deformation. We postulate that part of this deformation not absorbed by the EBSZ is accommodated in the eastern Betic External Zones, located to the north of the EBSZ, where several major historical earthquakes occurred (e.g., the 1748 Estubeny, 1396 Tavernes, and 2017 Caudete earthquakes). These major events have been attributed to the Jumilla Fault, the only major active structure described in this area (Giner-Robles et al. 2014; García-Mayordomo, J. and Jiménez-Díaz, A., 2015).</p><p>We present new CGPS data analysis that corroborate that the eastern Betic External Zones accommodate a significant part of the present convergence. Furthermore, our preliminary data quantify deformation in this area for the first time, as we obtain a shortening rate in the N-S direction of 1.43±0.06 mm/yr in the western sector of the Jumilla Fault (Murcia sector) and of 1.69±0.07 mm/yr in the eastern sector of the fault (Valencia sector). We propose that this deformation is likely related to the Jumilla Fault. Our study place constraints on the seismic potential of the highly populated eastern Betic External Zones, as the preliminary values that we obtained are significantly higher than those previously stated. Consequently, we propose that a re-assesment of seismic hazard is necessary for this highly populated region. Moreover, we also propose a regional geodynamic model that provide insights into mechanisms controlling earthquakes in the eastern Betic External Zones.</p><p> </p><p>References</p><p>Borque et al. (2019). Tectonics, 38, 5, 1824-1839</p><p>Echeverria et al. (2013). Tectonophysics, 608, 600-612.</p><p>Giner-Robles et al. (2014). Resúmenes de la 2ª Reunión Ibérica sobre Fallas Activas y Paleosismología, Lorca, España, 155-158.</p><p>García-Mayordomo, J. and Jiménez-Díaz, A. (2015). In: Quaternary Faults Database of Iberia v.3.0 - November 2015 (García-Mayordomo et al., eds.), IGME, Madrid.</p><p>Nocquet, J.M. (2012). Tectonophysics, 579, 220-242.</p><p>Pérez-Peña et al. (2010). Geomorphology, 119, 74-87</p><p>Serpelloni et al. (2007). Geophysical Journal Internationl, 169(3), 1180-1200.</p>

2020 ◽  
Author(s):  
Frédéric Masson ◽  
Mustapha Meghraoui ◽  
Najib Bahrouni ◽  
Mohammed Saleh ◽  
Maamri Ridha ◽  
...  

<p>The plate boundary in the western Mediterranean includes the Tunisian Atlas Mountains. We study the active deformation of this area using GPS data collected from 2014 to 2018. WNW to NNW trending velocities express the crustal motion and geodetic strain field from the Sahara platform to the Tell Atlas, consistent with the African plate convergence. To the south, the velocities indicate a nearly WNW-ESE trending right-lateral motion of the Sahara fault-related fold belt with respect to the Sahara Platform. Further north and northeast, the significant decrease in velocities between the Eastern Platform and Central – Tell Atlas marks the NNW trending shortening deformation associated with local ENE – WSW extension visible in the Quaternary grabens. The velocity field and strain distribution associated with the active E-W trending right-lateral faulting and NE-SW fault-related folds sustain the existence of three main tectonic blocks and related transpression tectonics. The velocity field and pattern of active deformation in Tunisia document the oblique plate convergence of Africa towards Eurasia. </p>


2014 ◽  
Vol 56 (6) ◽  
Author(s):  
Paula M. Figueiredo ◽  
João Cabral ◽  
Thomas K. Rockwell

<p>Southwest mainland Portugal is located close to the Eurasia-Nubia plate boundary and is characterized by moderate seismicity, although strong events have occurred as in 1755 (Mw≥8), 1969, (Mw 7.9), and more recently in 2007 (Mw 5.9) and 2009 (Mw 5.5), all located in the offshore. No historical earthquakes with onshore rupture are known for this region. At the coastline, high sea cliffs, incised drainages, emergent marine abrasion platforms and paleo sea cliffs indicate that this region is undergoing uplift, although no morphological features were found that could be unequivocally associated with the 1755 mega earthquake. To better understand the recent tectonic activity in this sector of Iberia, it is necessary not only to analyze active structures on land, but also to search for evidence for deformation that may relate to inferred offshore active structures. We thus conducted a study of marine terraces along the coastline to identify regional vertical crustal motions. Several poorly preserved surfaces with thin sedimentary deposits, comprising old beach sediments, were recognized at elevations starting at 2 m elevation and rising inland up to a regional abrasion platform situated at about 120 m a.s.l.. We identified distinct paleo sea level references at several locations at consistent elevations. This terrace sequence is likely Late Pleistocene in age, with individual platforms correlative to MIS 5 high stands and is coherent with a long-term slow uplift of the littoral zone for the southwest of Portugal. Although dating of discrete platforms is an ongoing and difficult task, preliminary correlations of paleo-shoreline elevations suggest that the uplift rate is in the range of 0.1-0.2 mm/yr.</p>


Author(s):  
Mustapha Meghraoui ◽  
Frederic Masson ◽  
Nejib Bahrouni ◽  
Abdelilah Tahayt ◽  
Mohamed Saleh ◽  
...  

&lt;p&gt;The Maghrebian tectonic domain in North Africa is here examined in the light of the recent GPS and seismotectonic results. The region includes the plate boundary in the western Mediterranean previously characterized by transpression and block rotation. The crustal deformation is documented along the Atlas Mountains in terms of the displacement field, with strain partitioning largely controlled by plate motions. The tectonic and seismotectonic analysis is based on our published data on shortening directions of Quaternary faulting and folding compared with present-day seismotectonic characteristics (earthquake moment tensors) of significant seismic events that allow an estimate of local and regional deformation rates in North Africa. Shortening directions oriented NE-SW to NW-SE for the Pliocene and Quaternary, respectively, and the S shape of the Quaternary anticline axes are in agreement with the 2&amp;#176;/Myr to 4&amp;#176;/Myr clockwise rotation obtained from paleomagnetic results on small tectonic blocks in the Tell Atlas. The continuous GPS data and results are obtained from the network in Morocco operative 1999 to 2006, the REGAT network in Algeria since 2007, and the network in Tunisia with data collected from 2014 to 2018. In addition, we add the most recent GPS results in southern Spain and southern Italy. The NW-SE to NNW-SSE 5 &amp;#177;1.5 mm/yr convergence velocity and strain distribution of the Maghrebian tectonic domain is controlled by crustal block tectonics driven by E-W trending right-lateral faulting and NE-SW thrust-related folding. The correlation between the active transpression tectonic structures and velocity field shows a geodynamic framework consistent with the oblique plate convergence of Africa towards Eurasia.&amp;#160;&lt;/p&gt;


2011 ◽  
Vol 289 (1-4) ◽  
pp. 135-149 ◽  
Author(s):  
João C. Duarte ◽  
Filipe M. Rosas ◽  
Pedro Terrinha ◽  
Marc-André Gutscher ◽  
Jacques Malavieille ◽  
...  

2020 ◽  
Vol 14 (4) ◽  
pp. 405-412
Author(s):  
Endra Gunawan ◽  
Takuya Nishimura ◽  
Susilo Susilo ◽  
Sri Widiyantoro ◽  
Nanang T. Puspito ◽  
...  

AbstractOn 6 December 2016 at 22:03 UTC, a devastating magnitude 6-class strike-slip earthquake occurred along an unidentified and unmapped fault in Pidie Jaya, northern Sumatra. We analysed the possible fault using continuous Global Positioning System (GPS) observation available in the region. In our investigation, we searched for the fault source parameters of the north- and south-dipping left-lateral faults and the west- and east-dipping right-lateral faults. We identified that the fault responsible for the earthquake was located offshore, with a southwest-northeast direction. We also computed the Coulomb failure stress and compared the result with the distribution of the aftershocks. In this study, we demonstrated that the result of the geological field survey conducted soon after the mainshock was attributed to the secondary effects of ground shaking and near-surface deformation, and not surface faulting. The newly identified offshore fault proposed by this study calls for further investigation of the corresponding submarine morphological attributes in this particular region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Sgroi ◽  
Alina Polonia ◽  
Graziella Barberi ◽  
Andrea Billi ◽  
Luca Gasperini

AbstractThe Calabrian Arc subduction-rollback system along the convergent Africa/Eurasia plate boundary is among the most active geological structures in the Mediterranean Sea. However, its seismogenic behaviour is largely unknown, mostly due to the lack of seismological observations. We studied low-to-moderate magnitude earthquakes recorded by the seismic network onshore, integrated by data from a seafloor observatory (NEMO-SN1), to compute a lithospheric velocity model for the western Ionian Sea, and relocate seismic events along major tectonic structures. Spatial changes in the depth distribution of earthquakes highlight a major lithospheric boundary constituted by the Ionian Fault, which separates two sectors where thickness of the seismogenic layer varies over 40 km. This regional tectonic boundary represents the eastern limit of a domain characterized by thinner lithosphere, arc-orthogonal extension, and transtensional tectonic deformation. Occurrence of a few thrust-type earthquakes in the accretionary wedge may suggest a locked subduction interface in a complex tectonic setting, which involves the interplay between arc-orthogonal extension and plate convergence. We finally note that distribution of earthquakes and associated extensional deformation in the Messina Straits region could be explained by right-lateral displacement along the Ionian Fault. This observation could shed new light on proposed mechanisms for the 1908 Messina earthquake.


2021 ◽  
Vol 13 (9) ◽  
pp. 1752
Author(s):  
Nikos Svigkas ◽  
Anastasia Kiratzi ◽  
Andrea Antonioli ◽  
Simone Atzori ◽  
Cristiano Tolomei ◽  
...  

The active collision of the Apulian continental lithosphere with the Eurasian plate characterizes the tectonics of the Epirus region in northwestern Greece, invoking crustal shortening. Epirus has not experienced any strong earthquakes during the instrumental era and thus there is no detailed knowledge of the way the active deformation is being expressed. In March 2020, a moderate size (Mw 5.8) earthquake sequence occurred close to the Kanallaki village in Epirus. The mainshock and major aftershock focal mechanisms are compatible with reverse faulting, on NNW-ESE trending nodal planes. We measure the coseismic surface deformation using radar interferometry and investigate the possible fault geometries based on seismic waveforms and InSAR data. Slip distribution models provide good fits to both nodal planes and cannot resolve the fault plane ambiguity. The results indicate two slip episodes for a N337° plane dipping 37° to the east and a single slip patch for a N137° plane dipping 43° to 55° to the west. Even though the area of the sequence is very close to the triple junction of western Greece, the Kanallaki 2020 activity itself seems to be distinct from it, in terms of the acting stresses.


2019 ◽  
Vol 93 (12) ◽  
pp. 2651-2660 ◽  
Author(s):  
Sergey Samsonov

AbstractThe previously presented Multidimensional Small Baseline Subset (MSBAS-2D) technique computes two-dimensional (2D), east and vertical, ground deformation time series from two or more ascending and descending Differential Interferometric Synthetic Aperture Radar (DInSAR) data sets by assuming that the contribution of the north deformation component is negligible. DInSAR data sets can be acquired with different temporal and spatial resolutions, viewing geometries and wavelengths. The MSBAS-2D technique has previously been used for mapping deformation due to mining, urban development, carbon sequestration, permafrost aggradation and pingo growth, and volcanic activities. In the case of glacier ice flow, the north deformation component is often too large to be negligible. Historically, the surface-parallel flow (SPF) constraint was used to compute the static three-dimensional (3D) velocity field at various glaciers. A novel MSBAS-3D technique has been developed for computing 3D deformation time series where the SPF constraint is utilized. This technique is used for mapping 3D deformation at the Barnes Ice Cap, Baffin Island, Nunavut, Canada, during January–March 2015, and the MSBAS-2D and MSBAS-3D solutions are compared. The MSBAS-3D technique can be used for studying glacier ice flow at other glaciers and other surface deformation processes with large north deformation component, such as landslides. The software implementation of MSBAS-3D technique can be downloaded from http://insar.ca/.


Sign in / Sign up

Export Citation Format

Share Document