Impact of the Late Pleistocene permafrost relics on spatial patterns of linear erosion in agricultural landscapes of central European Russia

Author(s):  
Anna Semochkina ◽  
Irina Streletskaya ◽  
Vladimir Belayaev ◽  
Sergey Kharchenko ◽  
Julia Kuznetsova ◽  
...  

<p>More than 90% territory of Russia influenced by modern and relict cryolithogenesis (Velichko, 1996). Many relict periglacial features bear witness of Late Pleistocene climate oscillation events and nowadays they are widespread in Mid-Latitude Western Europe including Russian territory. It is known, paleocryogenic factor influence on soil cover’s structure on the different geomorphological position. However interrelation problem between various type of relict cryogenic features (RCF) and modern geomorphological processes, especially erosion and sedimentation, and soil degradation stays unsearched.</p><p>The goal of research – to estimate, how RCF affects modern processes and soil cover structure within the agricultural areas (Yaroslavl and Kursk regions). The research also is concentrated on evaluation relationship between different types of the relic cryogenic features and intensity and spatial distribution of soil erosion and deposition processes on cultivated slopes.</p><p>Materials and Methods</p><p>This study is based on the analysis of aerial photographs (Sentinel, BingSat, Google, Yaundex), including DEMs and aero photos from air drone, and new field surveys. Also we used a group of methods to estimate erosion rates within the small catchments areas (soil profile morphology, analysis of Cesium-137 supply in soil, empirical-mathematical models USLE/ГГИ and WaTEM/SEDEM).  It is supposed to test modern methods (neuron net) for automatic decoding of paleocryogenic relief and creating an appropriate data set - contours or at least positions (centroids) of these forms.</p><p>Results</p><p>The relict permafrost-thermokarst relief prevails in the Yaroslavl Region; a polygonal relief with a block length of 40-50 m is visible almost everywhere. In new-ploughed fields  inside the polygons, a second generation of blocks with a side length of 10-20 m is visible.</p><p>To the south, on the territory covered with loess-loam soil stripes or trenches can be also detected. But on this southern territories relict cryogenic network are smaller, the relief of small knolls and depressions are widespread. They appeared due to ice-wedges melting.  An analysis of the structure of the erosion-channel network in the Kursk region showed that numerous small ravines and washed-out troughs, widespread on agricultural fields, largely inherit or developed due to the RCM forms.</p><p>Conclusions</p><p>The period of transition of active cryogenic forms to the relict state is associated with numerous processes of burial, redeposition and destruction of material and microrelief alignment.<br>RCF affects the structure and dynamics of modern erosion processes: shape and density of the erosion network; the direction, extent and complexity of the slope flows structure, the presence and alternation of redeposition and transit zones; sediment budget structure of elementary slope, gullys and small river catchment areas.</p><p>*This research is supported by the Russian Foundation for Basic Research (Project No. 18-05-01118a).</p>

2021 ◽  
Vol 13 (10) ◽  
pp. 1997
Author(s):  
Joan Grau ◽  
Kang Liang ◽  
Jae Ogilvie ◽  
Paul Arp ◽  
Sheng Li ◽  
...  

In agriculture-dominant watersheds, riparian ecosystems provide a wide array of benefits such as reducing soil erosion, filtering chemical compounds, and retaining sediments. Traditionally, the boundaries of riparian zones could be estimated from Digital Elevation Models (DEMs) or field surveys. In this study, we used an Unmanned Aerial Vehicle (UAV) and photogrammetry method to map the boundaries of riparian zones. We first obtained the 3D digital surface model with a UAV. We applied the Vertical Distance to Channel Network (VDTCN) as a classifier to delineate the boundaries of the riparian area in an agricultural watershed. The same method was also used with a low-resolution DEM obtained with traditional photogrammetry and two more LiDAR-derived DEMs, and the results of different methods were compared. Results indicated that higher resolution UAV-derived DEM achieved a high agreement with the field-measured riparian zone. The accuracy achieved (Kappa Coefficient, KC = 63%) with the UAV-derived DEM was comparable with high-resolution LiDAR-derived DEMs and significantly higher than the prediction accuracy based on traditional low-resolution DEMs obtained with high altitude aerial photos (KC = 25%). We also found that the presence of a dense herbaceous layer on the ground could cause errors in riparian zone delineation with VDTCN for both low altitude UAV and LiDAR data. Nevertheless, the study indicated that using the VDTCN as a classifier combined with a UAV-derived DEM is a suitable approach for mapping riparian zones and can be used for precision agriculture and environmental protection over agricultural landscapes.


2021 ◽  
Vol 36 (2) ◽  
pp. 224-238
Author(s):  
Louis Arbez ◽  
Aurelien Royer ◽  
Danielle Schreve ◽  
Remi Laffont ◽  
Serge David ◽  
...  

Author(s):  
Valeriy Demidov ◽  
Oleg Makarov

The monograph summarizes the information over the past 20 years on the currently widely used. The textbook is intended for students of higher educational institutions, studying in the specialty of soil science, as well as specializing in erosion and soil protection. The textbook describes the physical basis and mechanism of erosion processes, based on some sections of hydraulics, hydrology, hydro-and aeromechanics, knowledge of which is necessary to understand the mechanism of water, wind and irrigation soil erosion. The main mathematical models and principles of forecasting the values of soil losses as a result of erosion processes are considered. The textbook will be useful not only for students and postgraduates studying in the specialty of soil science, but also for geographers, ecologists and a wide range of specialists interested in the problems of soil cover conservation and environmental protection.


2019 ◽  
Vol 89 (10) ◽  
pp. 1044-1051
Author(s):  
Aleksandr S. Rulev ◽  
Anna M. Pugacheva

From acceptance of the 1948 Plan of Field-Protective Afforestation to the present (2019), this article considers the new agroforestry paradigms protracted formation. Scientific achievements from the 1940s, introduced into practice, served as the basis for decisions on natures global transformation. Pilot facilities from the beginning of the 20th century (the Bogdinsky agroforestry stronghold, the Stone-steppe oasis) still serve as reference objects for agroforest reclamation of territories, with a scientific approach that allows them to function productively today. The plans main idea is to combat drought and desertification of steppe lands, erosion processes, and to prevent sand and dust storms. Creation of 5709 thousand hectares of protective forests, afforestation of 1106 thousand hectares of ravines, fixing and afforestation of sand on an area of 322 thousand hectares, and implementation of many planned activities during a short period locate this plan among other ambitious international projects. The authors draw attention to the time of creation and the volume of plantings of paramount importance, that is, state protective forest belts and protective forest plantations. Understanding the importance of agroforestry for modern agricultural landscapes led to formation of sustainable and durable agroforestry systems in subarid landscapes based on a combination of agricultural and landscape-ecological ideologies. Allegedly, considering terrain ecotopes, three-dimensional evaluation of the agrolandscape and a non-linear approach make it possible to create multifunctional, highly productive agroforestry systems in critical agriculture zones.


Purpose. To characterize the methodological approaches that we develop in the formation of a system of information support for the creation and maintenance of the functioning of modern sustainable agricultural landscapes and to show the results of their implementation on the example of the territory of some agricultural enterprises of the Kharkiv region. Methods. Cartographic, geoinformation analysis, calculation, statistical and mathematical. Results. Some results of the work of the collective on the issues of information support for the creation and maintenance of the functioning of modern sustainable agricultural landscapes. Namely, verification of erosion models, studies of the functionality of shelter belts, the formation of an agroeconet (an extensive network of natural and quasi-natural landscapes) on agricultural land massifs, which ensures the maintenance of stable functioning of meso and macrolevel agrolandscapes, as well as the experience of using magnetic prospecting methods to verify the results of mathematical modeling of erosion processes. Conclusions. A number of methodological approaches to information support of the formation of sustainable agricultural landscapes in the natural and socio-economic conditions of Ukraine have been developed. They relate to the functioning of anti-erosion measures of permanent action, the processes of modern transformation of agro-landscapes, the ecological impact of erosion processes on the environment. The connection between the length of forest belts per unit of arable land and soil erosion is shown. A methodical approach has been developed to estimate the amount of soil washed away from arable land and to calculate the measures necessary to eliminate its harmful effects on the environment.


2020 ◽  
Vol 12 (3) ◽  
pp. 339-348
Author(s):  
Vladimir TATARINTSEV ◽  
◽  
Leonid TATARINTSEV ◽  
Alex MATSYURA ◽  
Andrei BONDAROVICH ◽  
...  

The aim of the work was the landscape analysis of agricultural geographical landscapes in the Altai Territory and elaboration of measures aimed at the rational use of agricultural lands. Environmental and landscape (landscape) approach became the main method of scientific research used in the analysis of modern agricultural landscapes. The cartographic method, using GIS-technologies, made it possible to digitize the obtained materials. Synthesized maps of agro-ecological, natural and other zoning of territories are based on topographic, soil, geobotanical and other thematic maps made during land surveying during the field survey. Retrospective analysis, induction and deduction methods,analysis and synthesis, as well as the abstract-logic method were also used in the work. Our main result was the analysis of land use territory for agricultural enterprise in municipal district of Altai Krai. Exploration of lands indicates a pronounced plant-growing specialization of JSC “Pobeda” with a developed animal breeding direction. Limiting factors affecting the rational use of land are natural and climatic conditions, terrain,unsystematic anthropogenic activity and, as a result, the development of erosion processes. The degree of eroded and deflated arable land is more than 50%, hay and pasture lands are also very unstable. Landscapes have been typified, based on which eleven types of land have been identified and their geomorphological description has been carried out. The first five types of land can be used for agricultural production with limitations compensated by crop technology and erosion control measures, the sixth and seventh types require grassing and, in some cases,conservation, the eighth and ninth types can be partially used for pasture and area valorization; the remaining two are not suitable for agricultural use but should be potentially used for planting and forest management. As a result of the presented transformation of agricultural lands, the structure of cultivated areas has changed. The area of arable land decreased by 877 ha, and of pastures by 365 ha,while the area under hayfields, fallow lands, and forest lands increased by 295, 191, and 875 ha respectively. Low-productive lands were withdrawn from agriculture. We suggested that the sustainability of agricultural land use was mainly caused by the reduction of anthropogenic load and increase in ecological equilibrium of the territory.


Author(s):  
Myroslav Voloshchuk

Based on generalization of literary sources, normative legal, stock materials and experimental data, the complex situation of soil degradation is highlighted. Different types and intensity of the manifestation of soil degradation, their distribution and characteristics are described. The threatening situation of manifestation of degradation processes in some regions of Ukraine is shown, among which soil erosion occupies the leading place. More than 4.5 million hectares are occupied by medium and strongly ground soils, including 68 thousand hectares completely lost their humus horizon. Particularly large areas of eroded soils are distributed on arable land in the Vinnytsia, Luhansk, Donetsk, Odesa, Chernivtsi and Ternopil regions, where the average annual ground wash is 24.5–27.8 t/ha with a tolerance of 2.5–3.7 t/ha. As a result of erosion processes from the total area of agricultural land, about 500 million tons of fertile soil layer is washed out on average annually, which contains about 24 million tons of humus, 0.96 million tons of nitrogen, 0.68 million tons of phosphorus and 9.4 million tons of potassium equivalent to 320–333 million tons of organic fertilizers, and ecological and economic losses due to erosion exceed 9 billion UAH. Flat soil was associated with linear erosion. The main indicators characterizing the degree of damage to land by linear erosion are the density of ravines, the distance and area between them, the slope, the properties of soils and rocks, the morphometric parameters of the ravines and their catchment areas. According to various estimates, the area of land affected by linear erosion in the country increases by 5–10 thousand ha annually. The effect of the ravines on the complete destruction of the land, deformation of the soil cover is highlighted. Information on various types of soil pollution by poison chemicals, industrial waste is given. According to the prediction of scientists in such a situation, 120–150 years on the planet can destroy the fertile soil layer. Key words: erosion, dehumidification, pollution, waterlogging, acidity, degraded land.


ESMO Open ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. e000258 ◽  
Author(s):  
Elena Pallari ◽  
Anthony W Fox ◽  
Grant Lewison

BackgroundThis is an appraisal of the impact of cited research evidence underpinning the development of cancer clinical practice guidelines (CPGs) by the professional bodies of the European Society for Medical Oncology (ESMO), the National Institute for Health and Care Excellence (NICE) and the Scottish Intercollegiate Guidelines Network (SIGN).MethodsA total of 101 CPGs were identified from ESMO, NICE and SIGN websites across 13 cancer sites. Their 9486 cited references were downloaded from the Web of Science Clarivate Group database, analysed on Excel (2016) using Visual Basic Application macros and imported onto SPSS (V.24.0) for statistical tests.ResultsESMO CPGs mostly cited research from Western Europe, while the NICE and SIGN ones from the UK, Canada, Australia and Scandinavian countries. The ESMO CPGs cited more recent and basic research (eg, drugs treatment), in comparison with NICE and SIGN CPGs where older and more clinical research (eg, surgery) papers were referenced. This chronological difference in the evidence base is also in line with that ESMO has a shorter gap between the publication of the research and its citation on the CPGs. It was demonstrated that ESMO CPGs report more chemotherapy research, while the NICE and SIGN CPGs report more surgery, with the results being statistically significant.ConclusionsWe showed that ESMO, NICE and SIGN differ in their evidence base of CPGs. Healthcare professionals should be aware of this heterogeneity in effective decision-making of tailored treatments to patients, irrespective of geographic location across Europe.


2021 ◽  
Author(s):  
Svetlana Sycheva ◽  
Manfred Frechen ◽  
Birgit Terhorst ◽  
Sergey Sedov ◽  
Olga Khokhlova

<p>A detailed pedocryostratigraphic scheme of the Late Pleistocene periglacial region of the East European Plain has been developed on the basis of study of the paleorelief, sediments, paleosols, and cryogenic horizons. OSL and <sup>14</sup>C-dating of paleosols and sediments in Aleksandrov quarry and in other sections made it possible to substantiate this scheme and correlate it with analogous ones for different regions of Europe. The loess-paleosol sequence in Aleksandrov quarry (51º05'N, 36º08'E) does not have an analogous with respect to the completeness in the whole East European Plain. In the filling of paleobalka the Ryshkovo paleosol of the Mikulino interglacial (MIS 5e) is observed. Over this paleosol, the Valdai soil-sediment series (MIS 5d – MIS 2) is located. It includes four interstadial soils, two of them of the Early Valdai (Kukuevo and Streletsk ones), and two, sometimes three, of the Middle Valdai (Aleksandrov, Hydrouzel и Bryansk ones). The OSL date, 127 ± 8 ka BP, (beginning of MIS 5e) was obtained for a sample taken from the bottom of the Ryshkovo soil. The interglacial soil is overlain by the Seym layer formed mainly from destroyed and redeposited horizons of this soil. For the upper part of the Seym layer, OSL dates of 115 ± 7 ka BP and 112 ± 20 ka BP were obtained (MIS 5d). But the process of burial of Ryshkovo soil in the bottom of the paleobalka began at the end of the interglacial after a catastrophic forest fire. Large post-permafrost deformations - pseudomorphosis is confined to Selikhovodvor loess - MIS 4 (65 ± 8 ka BP). Two soils occurring between Seym and Selikhovodvor loesses: Kukuevo and Streletsk - Early Valdai (MIS 5c and MIS 5a). For Mlodat loess which separates those two soils (MIS 5b), OSL dates of 91 ± 1 and 89 ± 7 ka BP were obtained. For paleosols of Middle Valdai (MIS 3), <sup>14</sup>C-dates were obtained: Aleksandrov (53.742 - 2.124 ka cal BP) and Bryansk soils (37.618 ± 0.668 ka cal BP). For Tuskar loess, which separates Alexandrov and Bryansk soils, OSL dates of 50 ± 3 and 51 ± 3 ka BP were obtained. The new stratigraphic scheme of Late Pleistocene agrees with the ideas of researchers from Eastern, Central, and Western Europe , which allows the following correlations. The identified paleosols correspond to the following intervals: Ryshkovo – Eemian interglacial (127-117 ka BP); Kukuevo to Amersfoort + Brørup – Saint-Germain 1 (105-95 ka BP); Streletsk – Odderade to Saint-Germain 2 (about 85-75 ka BP); Aleksandrov to Oerel (56-53 ka BP); Hydrouzel to Moershoofd – Poperinge (44-45 ka BP) and Hengelo (40-38 ka BP); and Bryansk (33-27 ka BP) to Stillfried B, Denekamp or Grand Bois interstadials. The reconstructed Late Pleistocene loess-paleosol sequence has the most similar structure with loess-paleosol sequences of Ukraine, with sequence Dolní Věstonice in Moravia (Czech Republik), Stillfried in Austria and Mainz-Weisenau in the Rhenish area (Germany), and other archives. <strong>This work was supported by RFBR, grant N19-29-05024 mk. </strong></p>


Sign in / Sign up

Export Citation Format

Share Document