Changes in braided river morphology driven by flood sequencing

Author(s):  
Rocio Luz Fernandez ◽  
Daniel Parsons ◽  
Stuart McLelland ◽  
Bas Bodewes

<p>Sequential observations of channel adjustments in relation to short-term flow variability are required to evaluate the effects of temporal ordering of hydrologic events on channel form. With the increasing hydroclimate variability due to global climate change, fluvial morphology might also exhibit adjustments toward changing equilibria. By combining flume and numerical modelling we examine the mechanism of bed morphology changes of braided rivers to a sequence of low to moderate magnitude flood events. Over 60 runs were performed in a mobile bed flume (10 m x 2.5 m), with constant longitudinal slope (0.015) and mean grain size (0.45 mm) in the Total Environment Simulator at the University of Hull, UK. The outcomes of each run were characterized by a detailed digital elevation model, digital imagery and continuous monitoring of the sediment transported through the flume outlet. Sediment conditions included floods with equilibrium and deficit loads. Rivers were allowed to evolve from an initially flat-bed to a self-organized, steady state. The rate of change and rate of bed load movement against time were indicative of the gradual approach to equilibrium. The Delft3D code in depth-averaged (2-D) mode was used to reproduce different aspects of the braiding process over an up-scaling of the laboratory river. Data analysis allowed us to assess the effect of discharge variation on the braiding dynamics and on the width-to-depth ratio of channels, which although variable in time, fluctuated among defined values. Once in equilibrium, net changes in reach-averaged width and depth values were relatively minor. The adjustment of the river morphology through time was well fitted by an exponential decay expression, and we tested diffusive relationships held within our braided river system for both constant and varying discharge conditions. In long term process-response systems, climatic changes introduce sequences of disruption of equilibria such as those analysed in this study. The results might provide then a useful basis for analysing the similar but more complex long-term dynamics found in natural rivers.</p><p> </p>

2016 ◽  
Vol 51 ◽  
pp. 11-26 ◽  
Author(s):  
Ashok Sigdel ◽  
Tetsuya Sakai

Fluvial sediments of the Siwalik successions in the Himalayan Foreland Basin are one of the most important continental archives for the history of Himalayan tectonics and climate change during the Miocene Period. This study reanalyzes the fluvial facies of the Siwalik Group along the Karnali River, where the large paleo-Karnali River system is presumed to have flowed. The reinterpreted fluvial system comprises fine-grained meandering river (FA1), flood-flow dominated meandering river with intermittent appearance of braided rivers (FA2), deep and shallow sandy braided rivers (FA3, FA4) to gravelly braided river (FA5) and finally debris-flow dominated braided river (FA6) facies associations, in ascending order. Previous work identified sandy flood-flow dominated meandering and anastomosed systems, but this study reinterprets these systems as a flood-flow dominated meandering river system with intermittent appearance of braided rivers, and a shallow sandy braided system, respectively. The order of the appearance of fluvial depositional systems in the Karnali River section is similar to those of other Siwalik sections, but the timing of the fluvial facies changes differs. The earlier appearance (3-4 Ma) of the flood-flow dominated meandering river system in the Karnali River section at about 13.5 Ma may have been due to early uplift of the larger catchment size of the paleo-Karnali River which may have changed the precipitation pattern i.e. intensification of the Indian Summer Monsoon. The change from a meandering river system to a braided river system is also recorded 1 to 3 Ma earlier than in other Siwalik sections in Nepal. Differential and diachronous activities of the thrust systems could be linked to change in catchment area as well as diachronous uplift and climate, the combination of which are major probable causes of this diachronity.


2020 ◽  
Vol 90 (9) ◽  
pp. 1175-1197
Author(s):  
Anne C. Fetrow ◽  
Kathryn E. Snell ◽  
Russell V. Di Fiori ◽  
Sean P. Long ◽  
Joshua W. Bonde

ABSTRACT Terrestrial sedimentary archives record critical information about environment and climate of the past, as well as provide insights into the style, timing, and magnitude of structural deformation in a region. The Cretaceous Newark Canyon Formation, located in central Nevada, USA, was deposited in the hinterland of the Sevier fold–thrust belt during the North American Cordilleran orogeny. While previous research has focused on the coarser-grained, fluvial components of the Newark Canyon Formation, the carbonate and finer-grained facies of this formation remain comparatively understudied. A more complete understanding of the Newark Canyon Formation provides insights into Cretaceous syndeformational deposition in the Central Nevada thrust belt, serves as a useful case study for deconvolving the influence of tectonic and climatic forces on sedimentation in both the North American Cordillera and other contractional orogens, and will provide a critical foundation upon which to build future paleoclimate and paleoaltimetry studies. We combine facies descriptions, stratigraphic measurements, and optical and cathodoluminescence petrography to develop a comprehensive depositional model for the Newark Canyon Formation. We identify six distinct facies that show that the Newark Canyon Formation evolved through four stages of deposition: 1) an anastomosing river system with palustrine interchannel areas, 2) a braided river system, 3) a balance-filled, carbonate-bearing lacustrine system, and 4) a second braided river system. Although climate undoubtedly played a role, we suggest that the deposition and coeval deformation of the synorogenic Newark Canyon Formation was in direct response to the construction of east-vergent contractional structures proximal to the type section. Comparison to other contemporary terrestrial sedimentary basins deposited in a variety of tectonic settings provides helpful insights into the influences of regional tectonics, regional and global climate, catchment characteristics, underlying lithologies, and subcrop geology in the preserved sedimentary record.


2004 ◽  
Vol 28 (4) ◽  
pp. 531-543 ◽  
Author(s):  
Diane Saint-Laurent

On examining the scientific literature of recent years, one notices an increase in the number of studies of global warming and its impact on the Earth’s various environments. Research has been undertaken in various fields such as geomorphology, hydrology and many others. In the context of climatic change, there is growing interest in the study of past floods, or palaeofloods. Researchers are attempting to reconstitute the chronology of past floods, especially with respect to past or subrecent climatic changes. The work involves using different methodological approaches borrowed from various disciplines including geology, geomorphology and ecology. The reconstruction of ancient hydrological events such as palaeofloods in fact requires that different methods and techniques be combined in order to trace the chronology of events as precisely as possible using different biophysical parameters. A wide variety of indicators are used in the chronological reconstruction of ancient fluvial environments, whether in humid, subhumid or desert regions. These indicators involve analysing stratigraphic sequences and sedimentary deposits, organic matter and macrorest deposits, as well as using radiocarbon dating(14C), thermoluminescence (TL), and dendrochronology and lichenometry. In fact, most work on the reconstitution of the frequency and magnitude of ancient floods uses several methods and techniques to obtain the long-term chronology of flood events in relation to the specific conditions (e.g., climate, geomorphology) of a region or study area. With the publication of several studies in palaeohydrology, it was interesting to examine, through a literature review, the various approaches used in the study of palaeofloods. This kind of study has seen major advances, which can be explained partly by the interest generated by global climate change and its effect on river-system dynamics.


Geologos ◽  
2010 ◽  
Vol 16 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Małgorzata Pisarska-Jamroży ◽  
Katarzyna Machowiak ◽  
Dariusz Krzyszkowski

Sedimentation style of a Pleistocene kame terrace from the Western Sudety Mountains, S PolandThe depositional conditions of kame terraces in a mountain valley were analysed sedimentologically and petrologically through a series of kame terraces in the Rudawy Janowickie mountains. The kame terraces comprise five lithofacies associations. Lithofacies association GRt, Sp originates from deposition in the high-energy, deep gravel-bed channel of a braided river. Lithofacies association GC represents a washed out glacial till. Probably a thin layer of till was washed out by sandy braided rivers (Sp). The fourth association (Fh, Fm) indicates a shallow and quite small glaciomarginal lake. The last association (GRt, GRp) indicates the return of deposition in a sandy-bed braided channel. The petrography of the Janowice Wiekie pit and measurements of cross-stratified beds indicate a palaeocurrent direction from N to S. The Janowice Wielkie sedimentary succession accumulated most probably during the Saalian (Odranian, Saale I, Drenthe) as the first phase of ice-sheet melting, because the kame terrace under study is the highest one, 25-27 m above the Bóbr river level. The deposits under study are dominated by local components. The proglacial streams flowed along the margin of the ice sheet and deposited the kame terrace. The majority of the sedimentary succession was deposited in a confined braided-river system in quite deep channels.


Author(s):  
A. V. Trapeznikov ◽  
V. N. Trapeznikova ◽  
A. V. Korzhavin ◽  
V. N. Nikolkin ◽  
A. P. Plataev

Relevance. In connection with the development of nuclear energy, many aquatic ecosystems have been exposed to radioactive substances. Fish, as an element of biota, is capable to accumulate radionuclides. However, fish is a traditional food. The control of the technogenic radionuclides accumulation level in the ichthyofauna is an important link in ensuring human security.Intention. To analyze the long-term data on the content of long-lived technogenic radionuclides 90Sr and 137Cs in the ichthyofauna of the Ob-Irtysh river system for the period from 2004 to 2016 and Beloyarsky pond for the period from 1977 to 2018.Methodology. Fish as a food product was assessed according to two criteria: a) permissible levels of specific activity of radionuclides (SanPiN 2.3.2.1078-01); b) using the indicator of conformity B and the uncertainty of its definition В (GOST 32161-2013 and GOST 32163-2013).Results and Discussion. Fish of all species that live in the river Tetcha, is not suitable for food use according to the criteria of SanPiN 2.3.2.1078-01, GOST 32161-2013 and GOST 32163-2013. The fish of the Ob-Irtysh river system, the habitat of which is located outside the Tetcha, meets the requirements for fish products. In the period from 1977 to 1989 in the Beloyarsk pond the accumulations of technogenic radionuclides in fish in quantities exceeding sanitary and hygienic standards were possible. Currently, the fish of the Beloyarsky pond fully complies with the sanitary and hygienic requirements for the radiation factor and is safe for human consumption.Conclusion. In the ponds exposed to the atomic energy enterprises, it is necessary to continuously monitor the content of long-lived technogenic radionuclides in fish and assess their amount in accordance with the requirements of SanPiN 2.3.2.1078-01 and using the conformity indicator В and the uncertainty of its determination В. 


2019 ◽  
pp. 79-95
Author(s):  
N.E. Terentiev

Based on the latest data, paper investigates the dynamics of global climate change and its impact on economic growth in the long-term. The notion of climate risk is considered. The main directions of climate risk management policies are analyzed aimed, first, at reducing anthropogenic greenhouse gas emissions through technological innovation and structural economic shifts; secondly, at adaptation of population, territories and economic complexes to the irreparable effects of climate change. The problem of taking into account the phenomenon of climate change in the state economic policy is put in the context of the most urgent tasks of intensification of long-term socio-economic development and parrying strategic challenges to the development of Russia.


1989 ◽  
Vol 21 (8-9) ◽  
pp. 1015-1024 ◽  
Author(s):  
C. P. Crockett ◽  
R. W. Crabtree ◽  
I. D. Cluckie

In England and Wales the placing of effluent discharge consents within a statistical framework has led to the development of a new hybrid type of river quality model. Such catchment scale consent models have a stochastic component for the generation of model inputs and a deterministic component to route them through the river system. This paper reviews and compares the existing approaches for consent modelling used by various Water Authorities. A number of possible future developments are suggested including the potential need for a national approach to the review and setting of long term consents.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 842
Author(s):  
Masaki Kaibori ◽  
Hideyuki Matsushima ◽  
Morihiko Ishizaki ◽  
Hisashi Kosaka ◽  
Kosuke Matsui ◽  
...  

This retrospective study recorded pertinent baseline geriatric assessment variables to identify risk factors for recurrence-free survival (RFS) and overall survival (OS) after hepatectomy in 100 consecutive patients aged ≥70 years with hepatocellular carcinoma. Patients had geriatric assessments of cognition, nutritional and functional statuses, and comorbidity burden, both preoperatively and at six months postoperatively. The rate of change in each score between preoperative and postoperative assessments was calculated by subtracting the preoperative score from the score at six months postoperatively, then dividing by the score at six months postoperatively. Patients with score change ≥0 comprised the maintenance group, while patients with score change <0 comprised the reduction group. The change in Geriatric 8 (G8) score at six months postoperatively was the most significant predictive factor for RFS and OS among the tested geriatric assessments. Five-year RFS rates were 43.4% vs. 6.7% (maintenance vs. reduction group; HR, 0.19; 95%CI, 0.11–0.31; p < 0.001). Five-year OS rates were 73.8% vs. 17.8% (HR, 0.12; 95%CI, 0.06–0.25; p < 0.001). Multivariate Cox proportional hazards analysis showed that perioperative maintenance of G8 score was an independent prognostic indicator for both RFS and OS. Perioperative changes in G8 scores can help forecast postoperative long-term outcomes in these patients.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1961-1974 ◽  
Author(s):  
Ming Wei ◽  
Armando Caballero ◽  
William G Hill

Formulae were derived to predict genetic response under various selection schemes assuming an infinitesimal model. Account was taken of genetic drift, gametic (linkage) disequilibrium (Bulmer effect), inbreeding depression, common environmental variance, and both initial segregating variance within families (σAW02) and mutational (σM2) variance. The cumulative response to selection until generation t(CRt) can be approximated asCRt≈R0[t−β(1−σAW∞2σAW02)t24Ne]−Dt2Ne,where Ne is the effective population size, σAW∞2=NeσM2 is the genetic variance within families at the steady state (or one-half the genic variance, which is unaffected by selection), and D is the inbreeding depression per unit of inbreeding. R  0 is the selection response at generation 0 assuming preselection so that the linkage disequilibrium effect has stabilized. β is the derivative of the logarithm of the asymptotic response with respect to the logarithm of the within-family genetic variance, i.e., their relative rate of change. R  0 is the major determinant of the short term selection response, but σM2, Ne and β are also important for the long term. A selection method of high accuracy using family information gives a small Ne and will lead to a larger response in the short term and a smaller response in the long term, utilizing mutation less efficiently.


Sign in / Sign up

Export Citation Format

Share Document