Sediment archives from the Arctic Ocean provide evidence for massive remobilization of permafrost carbon in Siberia during the last glacial termination

Author(s):  
Jannik Martens ◽  
Birgit Wild ◽  
Tommaso Tesi ◽  
Francesco Muschitiello ◽  
Matt O’Regan ◽  
...  

<p>Environmental archives and carbon cycle models suggest that climate warming during the last deglaciation (the transition from the last glacial to the Holocene) caused large-scale thaw of Arctic permafrost, followed by the release of previously freeze-locked carbon. In addition to changing oceanic circulation and outgassing of CO<sub>2 </sub>trapped in the deep glacial ocean, organic carbon (OC) release from thawing permafrost might have contributed to the rise in atmospheric CO<sub>2</sub> by 80 ppmv or ~200 Pg C between 17.5 and 11.7 kyr before present (BP). The few Arctic sediment cores to date, however, lack either temporal resolution or reflect only regional catchments, leaving most of the permafrost OC remobilization of the deglaciation unconstrained.</p><p>Our study explores the flux and fate of OC released from permafrost to the Siberian Arctic Seas during the last deglaciation. The Arctic Ocean is the main recipient of permafrost material delivered by river transport or collapse of coastal permafrost, providing an archive for current and past release of OC from thawing permafrost. We studied isotopes (Δ<sup>14</sup>C-OC, δ<sup>13</sup>C-OC) and terrestrial biomarkers (CuO-derived lignin phenols, <em>n</em>-alkanes, <em>n</em>-alkanoic acids) in a number of sediment cores from the Siberian Shelf and Central Arctic Ocean to reconstruct source and fate of OC previously locked in permafrost.</p><p>The composite record of three cores from the Laptev, East Siberian and Chukchi Seas suggest a combination of OC released by deepening of permafrost active layer in inland Siberia and by thermal collapse of coastal permafrost during the deglaciation. Coastal erosion of permafrost during the deglaciation suggests that sea-level rise and flooding of the Siberian shelf remobilized OC from permafrost deposits that covered the dry shelf areas during the last glacial. A sediment core from the Central Arctic Ocean demonstrates that this occurred in two major pulses; i) during the Bølling-Allerød (14.7-12.9 kyr BP), but most strongly ii) during the early Holocene (11-7.6 kyr BP). In the early Holocene, flooding of 80% of the Siberian shelf amplified permafrost OC release to the Arctic Ocean, with peak fluxes 10-9 kyr BP one order of magnitude higher than at other times in the Holocene.</p><p>It is likely that the remobilization of permafrost OC by flooding of the Siberian shelf released climate-significant amounts of dormant OC into active biogeochemical cycling and the atmosphere. Previous studies estimated that a pool of 300-600 Pg OC was held in permafrost covering Arctic Ocean shelves during the last glacial maximum; one can only speculate about its whereabouts after the deglaciation. Present und future reconstructions of historical remobilization of permafrost OC will help to understand how important permafrost thawing is to large-scale carbon cycling.</p>

2017 ◽  
Vol 13 (9) ◽  
pp. 1269-1284 ◽  
Author(s):  
Matt O'Regan ◽  
Jan Backman ◽  
Natalia Barrientos ◽  
Thomas M. Cronin ◽  
Laura Gemery ◽  
...  

Abstract. Ice sheets extending over parts of the East Siberian continental shelf have been proposed for the last glacial period and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean have left the timing, extent and even existence of these ice sheets largely unresolved. Here we present new geophysical mapping and sediment coring data from the East Siberian shelf and slope collected during the 2014 SWERUS-C3 expedition (SWERUS-C3: Swedish – Russian – US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions). The multibeam bathymetry and chirp sub-bottom profiles reveal a set of glacial landforms that include grounding zone formations along the outer continental shelf, seaward of which lies a  >  65 m thick sequence of glacio-genic debris flows. The glacial landforms are interpreted to lie at the seaward end of a glacial trough – the first to be reported on the East Siberian margin, here referred to as the De Long Trough because of its location due north of the De Long Islands. Stratigraphy and dating of sediment cores show that a drape of acoustically laminated sediments covering the glacial deposits is older than ∼ 50 cal kyr BP. This provides direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum and most likely occurred during the Saalian (Marine Isotope Stage (MIS) 6).


2016 ◽  
Vol 29 (13) ◽  
pp. 4977-4993 ◽  
Author(s):  
Alex D. Crawford ◽  
Mark C. Serreze

Abstract Extratropical cyclone activity over the central Arctic Ocean reaches its peak in summer. Previous research has argued for the existence of two external source regions for cyclones contributing to this summer maximum: the Eurasian continent interior and a narrow band of strong horizontal temperature gradients along the Arctic coastline known as the Arctic frontal zone (AFZ). This study incorporates data from an atmospheric reanalysis and an advanced cyclone detection and tracking algorithm to critically evaluate the relationship between the summer AFZ and cyclone activity in the central Arctic Ocean. Analysis of both individual cyclone tracks and seasonal fields of cyclone characteristics shows that the Arctic coast (and therefore the AFZ) is not a region of cyclogenesis. Rather, the AFZ acts as an intensification area for systems forming over Eurasia. As these systems migrate toward the Arctic Ocean, they experience greater deepening in situations when the AFZ is strong at midtropospheric levels. On a broader scale, intensity of the summer AFZ at midtropospheric levels has a positive correlation with cyclone intensity in the Arctic Ocean during summer, even when controlling for variability in the northern annular mode. Taken as a whole, these findings suggest that the summer AFZ can intensify cyclones that cross the coast into the Arctic Ocean, but focused modeling studies are needed to disentangle the relative importance of the AFZ, large-scale circulation patterns, and topographic controls.


2020 ◽  
Author(s):  
Daria Elkina ◽  
Thomas Frederichs ◽  
Walter Geibert ◽  
Jens Matthiessen ◽  
Frank Niessen ◽  
...  

<p>Accurate dating of marine sediments from the Arctic Ocean remains a subject of great debate over the last decades. Due to the lack of adequate materials for biostratigraphy and stable isotope analyses, paleomagnetic reconstructions came into play here but though yielded ambiguous interpretations. Moreover, sedimentation rates in the Quaternary, determined for isolated morphological features in the Arctic Ocean, are often applied to the entire Arctic Ocean realm resulting in an inappropriate oversimplification of probably diverging regional depositional regimes.</p><p>Paleomagnetic studies on four long sediment cores, collected from the Mendeleev Ridge and the Lomonosov Ridge, complemented by the results from one core from the Podvodnikov Basin, have provided an opportunity to compare the sedimentation history of these profound structures in the Arctic Ocean. Cores PS72/396-5 and PS72/410-3 (Mendeleev Ridge), PS87/023-1, PS87/030-1 (Lomonosov Ridge) and PS87/074-3 (Podvodnikov Basin) were retrieved during expeditions of RV Polarstern in 2008, and 2014. Paleomagnetic, rock magnetic and physical properties measurements were carried out at the Center for Geo-Environmental Research and Modeling (GEOMODEL) of the Research Park in St. Petersburg State University, at the University of Bremen, and the Alfred Wegener Institute.</p><p>According to the results on the Mendeleev Ridge’s cores, complemented with 230Th excess study on core PS72/396-5, the Brunhes Matuyama boundary (0.78 Ma) is observed at the first meters below the seafloor. That, together with the Matuyama Gauss transition (2.58 Ma) recorded in both cores, implies the mean sedimentation rate in this area to be in the order of mm/kyr.</p><p>In contrast to the Mendeleev Ridge, the cores from the Lomonosov Ridge and the Podvodnikov Basin have shown a more complex paleomagnetic record with a relevant shift to negative inclinations significantly deeper downcore. This could signify a relevant difference in the sedimentation regimes between both ridges during the Quaternary.    </p>


2017 ◽  
Author(s):  
Matt O'Regan ◽  
Jan Backman ◽  
Natalia Barrientos ◽  
Thomas M. Cronin ◽  
Gemery Laura ◽  
...  

Abstract. Ice sheets extending over parts of the East Siberian continental shelf have been proposed during the last glacial period, and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean has left the timing, extent and even existence of these ice sheets largely unresolved. Here we present new geophysical mapping and sediment coring data from the East Siberian shelf and slope collected during the 2014 SWERUS-C3 expedition (SWERUS-C3: Swedish – Russian – US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions). The multibeam bathymetry and chirp sub-bottom profiles reveal a set of glacial landforms that include grounding zone formations along the outer continental shelf, seaward of which lies a >65 m thick sequence of glaciogenic debris flows. The glacial landforms are interpreted to lie at the seaward end of a glacial trough – the first to be reported on the East Siberian margin, here referred to as the De Long Trough because of its location due north of the De Long Islands. Stratigraphy and dating of sediment cores show that a drape of acoustically laminated sediments covering the glacial deposits is older than ~50 cal. kyr BP. This provides direct evidence for extensive glacial activity on the Siberian shelf that pre-dates the Last Glacial Maximum and most likely occurred during the Saalian (Marine Isotope Stage [MIS] 6).


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal

Spring freshet is the dominant annual discharge event in all major Arctic draining rivers with large contributions to freshwater inflow to the Arctic Ocean. Research has shown that the total freshwater influx to the Arctic Ocean has been increasing, while at the same time, the rate of change in the Arctic climate is significantly higher than in other parts of the globe. This study assesses the large-scale atmospheric and surface climatic conditions affecting the magnitude, timing and regional variability of the spring freshets by analyzing historic daily discharges from sub-basins within the four largest Arctic-draining watersheds (Mackenzie, Ob, Lena and Yenisei). Results reveal that climatic variations closely match the observed regional trends of increasing cold-season flows and earlier freshets. Flow regulation appears to suppress the effects of climatic drivers on freshet volume but does not have a significant impact on peak freshet magnitude or timing measures. Spring freshet characteristics are also influenced by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation and the North Atlantic Oscillation, particularly in their positive phases. The majority of significant relationships are found in unregulated stations. This study provides a key insight into the climatic drivers of observed trends in freshet characteristics, whilst clarifying the effects of regulation versus climate at the sub-basin scale.


Science ◽  
1974 ◽  
Vol 186 (4166) ◽  
pp. 843-845
Author(s):  
R. C. Ayers ◽  
H. O. Jahns ◽  
J. L. Glaeser

2009 ◽  
Vol 1 (1) ◽  
pp. 511-525
Author(s):  
Paul Arthur Berkman

Abstract Environmental and geopolitical state-changes are the underlying first principles of the diverse stakeholder positioning in the Arctic Ocean. The Arctic Ocean is changing from an ice-covered region to an ice-free region during the summer, which is an environmental state-change. As provided under the framework of the United Nations Convention on the Law of the Sea (UNCLOS), the central Arctic Ocean currently involves “High-Seas” (beyond the “Exclusive Economic Zones”) and the underlying “Area” of the deep-sea floor (beyond the “Continental Shelves”). Governance applications of this ‘donut’ demography – with international space surrounded by sovereign sectors – would be a geopolitical state-change in the Arctic Ocean. International governance strategies and applications for the central Arctic Ocean have far-reaching implications for the stewardship of other international spaces, which between Antarctica and the ocean beyond national jurisdictions account for nearly 75 percent of the Earth’s surface. In view of planetary-scale strategies for humankind, with frameworks such as climate, the Arctic Ocean underscores the challenges and opportunities to balance the governance of nation states and international spaces centuries into the future.


1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


2021 ◽  
Author(s):  
Flor Vermassen ◽  
Helen K. Coxall ◽  
Gabriel West ◽  
Matt O'Regan

<p>Harsh environmental and taphonomic conditions in the central Arctic Ocean make age-modelling for Quaternary palaeoclimate reconstructions challenging. Pleistocene age models in the Arctic have relied heavily on cyclostratigraphy using lithologic variability tied to relatively poorly calibrated foraminifera biostratigraphic events. Recently, the identification of <em>Pseudoemiliania lacunosa</em> in a sediment core from the Lomonosov Ridge, a coccolithophore that went extinct during marine isotope stage (MIS) 12 (478-424 ka), has been used to delineate glacial-interglacial units back to MIS 14 (~500 ka BP). Here we present a comparative study on how this nannofossil biostratigraphy fits with existing foraminifer biohorizons that are recognised in central Arctic Ocean sediments. A new core from the Alpha Ridge is presented, together with its lithologic variability and down-core compositional changes in planktonic and benthic foraminifera. The core exhibits an interval dominated by <em>Turborotalita egelida</em>, a planktonic foraminifer that is increasingly being adopted as a marker for MIS11 in sediment cores from the Amerasian Basin of the Arctic Ocean. We show that the new age-constraints provided by calcareous nannofossils are difficult to reconcile with the proposed MIS 11 age for the <em>T. egelida</em> horizon. Instead, the emerging litho- and coccolith biostratigraphy implies that Amerasian Basin sediments predating MIS5 are older than the egelida-based age models suggest, i.e. that the <em>T. egelida</em> Zone is older than MIS11. These results expose uncertainties regarding the age determination of glacial-interglacial cycles in the Amerasian basin and point out that future work is required to reconcile the micro- and nannofossil biostratigraphy of the Amerasian and Eurasian basin.</p>


2019 ◽  
Author(s):  
Antoine Berchet ◽  
Isabelle Pison ◽  
Patrick M. Crill ◽  
Brett Thornton ◽  
Philippe Bousquet ◽  
...  

Abstract. Due to the large variety and heterogeneity of sources in remote areas hard to document, the Arctic regional methane budget remain very uncertain. In situ campaigns provide valuable data sets to reduce these uncertainties. Here we analyse data from the SWERUS-C3 campaign, on-board the icebreaker Oden, that took place during summer 2014 in the Arctic Ocean along the Northern Siberian and Alaskan shores. Total concentrations of methane, as well as isotopic ratios were measured continuously during this campaign for 35 days in July and August 2014. Using a chemistry-transport model, we link observed concentrations and isotopic ratios to regional emissions and hemispheric transport structures. A simple inversion system helped constraining source signatures from wetlands in Siberia and Alaska and oceanic sources, as well as the isotopic composition of lower stratosphere air masses. The variation in the signature of low stratosphere air masses, due to strongly fractionating chemical reactions in the stratosphere, was suggested to explain a large share of the observed variability in isotopic ratios. These points at required efforts to better simulate large scale transport and chemistry patterns to use isotopic data in remote areas. It is found that constant and homogeneous source signatures for each type of emission in the region (mostly wetlands and oil and gas industry) is not compatible with the strong synoptic isotopic signal observed in the Arctic. A regional gradient in source signatures is highlighted between Siberian and Alaskan wetlands, the later ones having a lighter signatures than the first ones. Arctic continental shelf sources are suggested to be a mixture of methane from a dominant thermogenic origin and a secondary biogenic one, consistent with previous in-situ isotopic analysis of seepage along the Siberian shores.


Sign in / Sign up

Export Citation Format

Share Document