The three-dimensional geometries of segmented normal faults

Author(s):  
John Walsh ◽  
Vincent Roche ◽  
Giovanni Camanni ◽  
Conrad Childs ◽  
Tom Manzocchi ◽  
...  

<p>Normal faults are often complex three dimensional structures comprising multiple sub-parallel segments separated by intervening relay zones. In this study we outline geometrical characterisations capturing this 3D complexity and providing a semi-quantitative basis for the comparison of faults and for defining the factors controlling their geometrical evolution.</p><p>Individual relay zones can be assigned to one of four types according to their form (i.e. whether the bounding segments are unconnected in 3D or merge into a single surface) and their orientation (i.e. whether they are slip-parallel or slip-perpendicular). From the detailed analysis of 84 fault arrays mapped from 3D seismic reflection surveys (including 63 from our mapping of 8 different study areas and 21 derived from the literature), we show that the 3D geometry of fault arrays can be quantitatively defined on the basis of the relative numbers of these types of relay zones.</p><p>Detailed mapping of fault zones indicates that whilst they can individually contain all four types of relay zone, their relative proportions varies between different study areas. Differences in the proportions of relay zone types are attributed to two primary controls, the mechanical heterogeneity of the faulted sequence and the presence of basement structure. For example, relay zones with an upward bifurcating geometry are prevalent in faults that reactivate deeper structures, whereas the formation of laterally bifurcating relays is promoted by heterogeneous mechanical stratigraphy. </p><p>Fault arrays in the literature generally do not contain the full range of possible relay zone type but tend to comprise either all bifurcating relay zones or all unconnected relay zones. These end-member fault geometries have led to contrasting conceptual models for the growth of faults. The mapping conducted here suggests that the proportion of bifurcating relay zones increases as data resolution increases and that fault surface bifurcation is ubiquitous. Models for the geometrical evolution of fault arrays must account for the full range of relay zone geometries that appears to be a characteristic of all faults.</p>

2021 ◽  
Author(s):  
Vincent Roche ◽  
Giovanni Camanni ◽  
Conrad Childs ◽  
Tom Manzocchi ◽  
John Walsh ◽  
...  

<p>Normal faults are often complex three-dimensional structures comprising multiple sub-parallel segments separated by intact or breached relay zones. In this study we outline geometrical characterisations capturing this 3D complexity and providing a semi-quantitative basis for the comparison of faults and for defining the factors controlling their geometrical evolution. Relay zones are classified according to whether they step in the strike or dip direction and whether the relay zone-bounding fault segments are unconnected in 3D or bifurcate from a single surface. Complex fault surface geometry is then described in terms of the relative numbers of different types of relay zones to allow comparison of fault geometry between different faults and different geological settings. A large database of 87 fault arrays compiled primarily from mapping 3D seismic reflection surveys and classified according to this scheme, reveals the diversity of 3D fault geometry. Analysis demonstrates that mapped fault geometries depend on geological controls, primarily the heterogeneity of the faulted sequence and the presence of a pre-existing structure. For example, relay zones with an upward bifurcating geometry are prevalent in faults that reactivate deeper structures, whereas the formation of laterally bifurcating relays is promoted by heterogeneous mechanical stratigraphy. In addition, mapped segmentation depends on resolution limits and biases in fault mapping from seismic data. In particular, the results suggest that the proportion of bifurcating relay zones increases as data resolution increases. Overall, where a significant number of relay zones are mapped on a single fault, a wide variety of relay zone geometries occurs, demonstrating that individual faults can comprise segments that are both bifurcating and unconnected in three dimensions. Models for the geometrical evolution of fault arrays must therefore account for the full range of relay zone geometries that appears to be a characteristic of all faults.</p>


2019 ◽  
Author(s):  
Efstratios Delogkos ◽  
Muhammad Mudasar Saqab ◽  
John J. Walsh ◽  
Vincent Roche ◽  
Conrad Childs

Abstract. Normal faults have irregular geometries on a range of scales arising from different processes including refraction and segmentation. A fault with an average dip and constant displacement on a large-scale, will have irregular geometries on smaller scales, the presence of which will generate fault-related folds, with major implications for across-fault throw variations. A quantitative model has been presented which illustrates the range of deformation arising from movement on fault surface irregularities, with fault-bend folding generating geometries reminiscent of normal drag and reverse drag. The model highlights how along-fault displacements are partitioned between continuous (i.e. folding) and discontinuous (i.e. discrete displacement) strain along fault bends characterised by the full range of fault dip changes. Strain partitioning has a profound effect on measured throw values across faults, if account is not taken of the continuous strains accommodated by folding and bed rotations. We show that fault throw can be subject to errors of up to ca. 50 % for realistic fault bend geometries (up to ca. 40°), even on otherwise sub-planar faults with constant displacement. This effect will provide apparently more irregular variations in throw and bed geometries that must be accounted for in associated kinematic interpretations.


2020 ◽  
Author(s):  
Giovanni Camanni ◽  
Vincent Roche ◽  
Conrad Childs ◽  
Tom Manzocchi ◽  
John Walsh ◽  
...  

<p>Individual normal faults are rarely single planar surfaces and often comprise arrays of fault segments arising from the earliest stages of fault propagation. Current models for the geometry and formation of relay zones between adjacent fault segments have been informed mainly by 2D analysis from either maps or cross-sections observed in outcrop and, to a lesser extent, by the analysis of relay zones from 3D seismic reflection data. Using high quality 3D seismic reflection datasets from a selection of sedimentary basins, we investigate fundamental characteristics of segmentation from the analysis of 67 normal faults with modest displacements (< ca. 190 m) which preserve the 3D geometry of 532 relay zones. Our analysis shows that relay zones most often develop by bifurcation from a single fault surface but can also arise from the formation of segments which are disconnected in 3D. Relay zones generally occur between fault segments that step in either the dip or strike direction, and oblique relay zones with an intermediate orientation are less frequent. This is attributed to the influence of mechanical stratigraphy, and to a tendency for faults to locally propagate laterally and vertically rather than obliquely. Cross-sectional stepping of relay zones typically forms contractional rather than extensional relay zones, a configuration which is attributed to the development of early stage Riedel shears associated with fault localisation. Comparing datasets from different geological settings suggests that the mechanical heterogeneity of the faulted sequence and the influence of pre-existing structure are the underlying controls on the geometrical characteristics of relay zones in normal faults, and different combinations of these two controls can account for the variation in fault zone structure observed between datasets.</p>


2019 ◽  
Vol 63 (5) ◽  
pp. 50402-1-50402-9 ◽  
Author(s):  
Ing-Jr Ding ◽  
Chong-Min Ruan

Abstract The acoustic-based automatic speech recognition (ASR) technique has been a matured technique and widely seen to be used in numerous applications. However, acoustic-based ASR will not maintain a standard performance for the disabled group with an abnormal face, that is atypical eye or mouth geometrical characteristics. For governing this problem, this article develops a three-dimensional (3D) sensor lip image based pronunciation recognition system where the 3D sensor is efficiently used to acquire the action variations of the lip shapes of the pronunciation action from a speaker. In this work, two different types of 3D lip features for pronunciation recognition are presented, 3D-(x, y, z) coordinate lip feature and 3D geometry lip feature parameters. For the 3D-(x, y, z) coordinate lip feature design, 18 location points, each of which has 3D-sized coordinates, around the outer and inner lips are properly defined. In the design of 3D geometry lip features, eight types of features considering the geometrical space characteristics of the inner lip are developed. In addition, feature fusion to combine both 3D-(x, y, z) coordinate and 3D geometry lip features is further considered. The presented 3D sensor lip image based feature evaluated the performance and effectiveness using the principal component analysis based classification calculation approach. Experimental results on pronunciation recognition of two different datasets, Mandarin syllables and Mandarin phrases, demonstrate the competitive performance of the presented 3D sensor lip image based pronunciation recognition system.


2020 ◽  
Vol 12 (1) ◽  
pp. 851-865
Author(s):  
Sukonmeth Jitmahantakul ◽  
Piyaphong Chenrai ◽  
Pitsanupong Kanjanapayont ◽  
Waruntorn Kanitpanyacharoen

AbstractA well-developed multi-tier polygonal fault system is located in the Great South Basin offshore New Zealand’s South Island. The system has been characterised using a high-quality three-dimensional seismic survey tied to available exploration boreholes using regional two-dimensional seismic data. In this study area, two polygonal fault intervals are identified and analysed, Tier 1 and Tier 2. Tier 1 coincides with the Tucker Cove Formation (Late Eocene) with small polygonal faults. Tier 2 is restricted to the Paleocene-to-Late Eocene interval with a great number of large faults. In map view, polygonal fault cells are outlined by a series of conjugate pairs of normal faults. The polygonal faults are demonstrated to be controlled by depositional facies, specifically offshore bathyal deposits characterised by fine-grained clays, marls and muds. Fault throw analysis is used to understand the propagation history of the polygonal faults in this area. Tier 1 and Tier 2 initiate at about Late Eocene and Early Eocene, respectively, based on their maximum fault throws. A set of three-dimensional fault throw images within Tier 2 shows that maximum fault throws of the inner polygonal fault cell occurs at the same age, while the outer polygonal fault cell exhibits maximum fault throws at shallower levels of different ages. The polygonal fault systems are believed to be related to the dewatering of sedimentary formation during the diagenesis process. Interpretation of the polygonal fault in this area is useful in assessing the migration pathway and seal ability of the Eocene mudstone sequence in the Great South Basin.


Geophysics ◽  
1986 ◽  
Vol 51 (5) ◽  
pp. 1127-1140 ◽  
Author(s):  
Paul M. Kieniewicz ◽  
Bruce P. Luyendyk

The Santa Maria Basin in southern California is a lowland bounded on the south by the Santa Ynez River fault and on the northeast by the Little Pine‐Foxen Canyon‐Santa Maria River faults. It contains Neogene sedimentary rocks which rest unconformably on a basement of Cretaceous and older clastic rocks. Analysis of over 4 000 gravity stations obtained from the Defense Mapping Agency suggests that the Bouguer anomaly contains a short‐wavelength component arising from a variable‐density contrast between the basin’s Neogene units and the Cretaceous basement. A three‐dimensional inversion of the short‐wavelength component (constrained by wells drilled to basement) yields a structure model of the basement and the average density of the overlying sediments, assuming that the basement does not contain large‐scale density variations. The density anomalies modeled in the Neogene sediments, showing higher densities in the basin troughs, can be related to diagenetic changes in the silica facies of the Monterey and Sisquoc formations. The basement structure model shows the basin as composed of parallel ridges and troughs, trending west‐northwest and bounded by steep slopes interpreted as fault scarps. The basin is bounded on the west by a north‐south trending slope which may also represent a fault scarp.


Tectonics ◽  
2007 ◽  
Vol 26 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Youichiro Takada ◽  
Yukitoshi Fukahata ◽  
Akinori Hashima ◽  
Toshiko Terakawa ◽  
Kenji Fukui ◽  
...  

Author(s):  
Peter Demian ◽  
Kirti Ruikar ◽  
Tarun Sahu ◽  
Anne Morris

An increasing amount of information is packed into BIMs, with the 3D geometry serving as a central index leading to other information. The 3DIR project investigates information retrieval from such environments. Here, the 3D visualization can be exploited when formulating queries, computing the relevance of information items, or visualizing search results. The need for such a system was specified using workshops with end users. A prototype was built on a commercial BIM platform. Following an evaluation, the system was enhanced to exploit model topology. Relationships between 3D objects are used to widen the search, whereby relevant information items linked to a related 3D object (rather than linked directly to objects selected by the user) are still retrieved but ranked lower. An evaluation of the enhanced prototype demonstrates its effectiveness but highlights its added complexity. Care needs to be taken when exploiting topological relationships, but that a tight coupling between text-based retrieval and the 3D model is generally effective in information retrieval from BIMs.


2020 ◽  
Vol 117 (44) ◽  
pp. 27204-27210 ◽  
Author(s):  
Yong Hu ◽  
Zipeng Guo ◽  
Andrew Ragonese ◽  
Taishan Zhu ◽  
Saurabh Khuje ◽  
...  

Molecular ferroelectrics combine electromechanical coupling and electric polarizabilities, offering immense promise in stimuli-dependent metamaterials. Despite such promise, current physical realizations of mechanical metamaterials remain hindered by the lack of rapid-prototyping ferroelectric metamaterial structures. Here, we present a continuous rapid printing strategy for the volumetric deposition of water-soluble molecular ferroelectric metamaterials with precise spatial control in virtually any three-dimensional (3D) geometry by means of an electric-field–assisted additive manufacturing. We demonstrate a scaffold-supported ferroelectric crystalline lattice that enables self-healing and a reprogrammable stiffness for dynamic tuning of mechanical metamaterials with a long lifetime and sustainability. A molecular ferroelectric architecture with resonant inclusions then exhibits adaptive mitigation of incident vibroacoustic dynamic loads via an electrically tunable subwavelength-frequency band gap. The findings shown here pave the way for the versatile additive manufacturing of molecular ferroelectric metamaterials.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yun Lei

Unconventional rocks such as tight sandstone and shale usually develop multiscale complex pore structures, with dimensions ranging from nanometers to millimeters, and the full range can be difficult to characterize for natural samples. In this paper, we developed a new hybrid digital rock construction approach to mimic the pore space of tight sandstone by combining X-ray CT scanning and multiple-point geostatistics algorithm (MPGA). First, a three-dimensional macropore digital rock describing the macroscopic pore structure of tight sandstone was constructed by micro-CT scanning. Then, high-resolution scanning electron microscopy (SEM) was performed on the tight sandstone sample, and the three-dimensional micropore digital rock was reconstructed by MPGA. Finally, the macropore digital rock and the micropore digital rock were superimposed into the full-pore digital rock. In addition, the nuclear magnetic resonance (NMR) response of digital rocks is simulated using a random walk method, and seepage simulation was performed by the lattice Boltzmann method (LBM). The results show that the full-pore digital rock has the same anisotropy and good connectivity as the actual rock. The porosity, NMR response, and permeability are in good agreement with the experimental values.


Sign in / Sign up

Export Citation Format

Share Document