Switches of Holocene temperature-precipitation correlations in northern Hemisphere extra-tropics comparing proxy and model data

Author(s):  
Ulrike Herzschuh ◽  
Thomas Boehmer ◽  
Raphael Herbert ◽  
Thomas Laepple ◽  
Richard Telford ◽  
...  

<p>Switches of temperature-precipitation correlation in northern Hemisphere extra-tropics</p><p>Future precipitation response to warming remains uncertain because climate models poorly reproduce observed changes of temperature-precipitation correlations. However, restricting model validations to the observational period may yield to misleading conclusions due to the complexity of the involved processes. Our analyses of Holocene proxy-based temperature-precipitation correlations from 1500 northern Hemisphere extratropic pollen records portrayed significant latitudinal dependance, temporal changes from the early to late Holocene as well as differences between short and long time-scales. These observed variations were found to be mostly consistent with patterns simulated by Holocene transient climate simulations. Our results suggest that the strength of positive temperature-precipitation correlations in high-latitudes is sensitive to the background temperature while monsoonal subtropics reflect spatial shifts of circulation systems; and correlation sign switches in mid-latitudes relate to changes of westerlies strength. We conclude that regional and continental climate change on land is more complex than the expected “wetter climate in a warmer world” assumption which holds well at the global scale. On the other hand, long-term projections of precipitation may be better than previously thought as major processes seem to be already implemented correctly in general circulation models.</p>

2009 ◽  
Vol 5 (5) ◽  
pp. 2115-2156 ◽  
Author(s):  
M. Widmann ◽  
H. Goosse ◽  
G. van der Schrier ◽  
R. Schnur ◽  
J. Barkmeijer

Abstract. Climate proxy data provide noisy, and spatially incomplete information on some aspects of past climate states, whereas palaeosimulations with climate models provide global, multi-variable states, which may however differ from the true states due to unpredictable internal variability not related to climate forcings, as well as due to model deficiencies. Using data assimilation for combining the empirical information from proxy data with the physical understanding of the climate system represented by the equations in a climate model is in principle a promising way to obtain better estimates for the climate of the past. Data assimilation has been used for a long time in weather forecasting and atmospheric analyses to control the states in atmospheric General Circulation Models such that they are in agreement with observation from surface, upper air, and satellite measurements. Here we discuss the similarities and the differences between the data assimilation problem in palaeoclimatology and in weather forecasting, and present and conceptually compare three data assimilation methods that have been developed in recent years for applications in palaeoclimatology. All three methods (selection of ensemble members, Forcing Singular Vectors, and Pattern Nudging) are illustrated by examples that are related to climate variability over the extratropical Northern Hemisphere during the last millennium. In particular it is shown that all three methods suggest that the cold period over Scandinavia during 1790–1820 is linked to anomalous northerly or easterly atmospheric flow, which in turn is related to a pressure anomaly that resembles a negative state of the Northern Annular Mode.


2010 ◽  
Vol 6 (5) ◽  
pp. 627-644 ◽  
Author(s):  
M. Widmann ◽  
H. Goosse ◽  
G. van der Schrier ◽  
R. Schnur ◽  
J. Barkmeijer

Abstract. Climate proxy data provide noisy, and spatially incomplete information on some aspects of past climate states, whereas palaeosimulations with climate models provide global, multi-variable states, which may however differ from the true states due to unpredictable internal variability not related to climate forcings, as well as due to model deficiencies. Using data assimilation for combining the empirical information from proxy data with the physical understanding of the climate system represented by the equations in a climate model is in principle a promising way to obtain better estimates for the climate of the past. Data assimilation has been used for a long time in weather forecasting and atmospheric analyses to control the states in atmospheric General Circulation Models such that they are in agreement with observation from surface, upper air, and satellite measurements. Here we discuss the similarities and the differences between the data assimilation problem in palaeoclimatology and in weather forecasting, and present and conceptually compare three data assimilation methods that have been developed in recent years for applications in palaeoclimatology. All three methods (selection of ensemble members, Forcing Singular Vectors, and Pattern Nudging) are illustrated by examples that are related to climate variability over the extratropical Northern Hemisphere during the last millennium. In particular it is shown that all three methods suggest that the cold period over Scandinavia during 1790–1820 is linked to anomalous northerly or easterly atmospheric flow, which in turn is related to a pressure anomaly that resembles a negative state of the Northern Annular Mode.


2020 ◽  
Vol 33 (17) ◽  
pp. 7539-7551
Author(s):  
D. Allie Wyman ◽  
Jessica. L. Conroy ◽  
Christina Karamperidou

AbstractENSO and the mean zonal sea surface temperature gradient (dSST) of the tropical Pacific are important drivers of global climate and vary on decadal to centennial time scales. However, the relationship between dSST and ENSO cannot be assessed with the short instrumental record, and is uncertain in proxy data, with intervals of both stronger and weaker ENSO postulated to occur with overall strong dSST in the past. Here we assess the ENSO–dSST relationship during the last millennium using general circulation models (GCMs) participating in phase 3 of the Paleoclimate Modeling Intercomparison Project. Last millennium GCM simulations show diversity in the strength and direction of the ENSO–dSST relationship. Yet, the models that best simulate modern tropical Pacific climate frequently have a more negative ENSO–dSST correlation. Thus, last millennium tropical Pacific climate simulations support the likelihood of enhanced ENSO during decadal to centennial periods of reduced tropical Pacific dSST. However, the alternating directional ENSO–dSST relationship in all model simulations suggests that this relationship is not constant through time and is likely controlled by multiple mechanisms.


2008 ◽  
Vol 21 (19) ◽  
pp. 4955-4973 ◽  
Author(s):  
Michael P. Jensen ◽  
Andrew M. Vogelmann ◽  
William D. Collins ◽  
Guang J. Zhang ◽  
Edward P. Luke

Abstract To aid in understanding the role that marine boundary layer (MBL) clouds play in climate and assist in improving their representations in general circulation models (GCMs), their long-term microphysical and macroscale characteristics are quantified using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the National Aeronautics and Space Administration’s (NASA’s) Terra satellite. Six years of MODIS pixel-level cloud products are used from oceanic study regions off the west coasts of California, Peru, the Canary Islands, Angola, and Australia where these cloud types are common. Characterizations are given for their organization (macroscale structure), the associated microphysical properties, and the seasonal dependencies of their variations for scales consistent with the size of a GCM grid box (300 km × 300 km). MBL mesoscale structure is quantified using effective cloud diameter CD, which is introduced here as a simplified measure of bulk cloud organization; it is straightforward to compute and provides descriptive information beyond that offered by cloud fraction. The interrelationships of these characteristics are explored while considering the influences of the MBL state, such as the occurrence of drizzle. Several commonalities emerge for the five study regions. MBL clouds contain the best natural examples of plane-parallel clouds, but overcast clouds occur in only about 25% of the scenes, which emphasizes the importance of representing broken MBL cloud fields in climate models (that are subgrid scale). During the peak months of cloud occurrence, mesoscale organization (larger CD) increases such that the fractions of scenes characterized as “overcast” and “clumped” increase at the expense of the “scattered” scenes. Cloud liquid water path and visible optical depth usually trend strongly with CD, with the largest values occurring for scenes that are drizzling. However, considerable interregional differences exist in these trends, suggesting that different regression functionalities exist for each region. For peak versus off-peak months, the fraction of drizzling scenes (as a function of CD) are similar for California and Angola, which suggests that a single probability distribution function might be used for their drizzle occurrence in climate models. The patterns are strikingly opposite for Peru and Australia; thus, the contrasts among regions may offer a test bed for model simulations of MBL drizzle occurrence.


2017 ◽  
Author(s):  
Amanda Frigola ◽  
Matthias Prange ◽  
Michael Schulz

Abstract. The Middle Miocene Climate Transition was characterized by major Antarctic ice-sheet expansion and global cooling during the interval ~ 15–13 Ma. Here we present two sets of boundary conditions for global general circulation models characterizing the periods before (Middle Miocene Climatic Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the transition. These boundary conditions include Middle Miocene global topography, bathymetry and vegetation. Additionally, Antarctic ice volume and geometry, sea-level and atmospheric CO2 concentration estimates for the MMCO and the MMG are reviewed. The boundary-condition files are available for use as input in a wide variety of global climate models and constitute a valuable tool for modeling studies with a focus on the Middle Miocene.


2009 ◽  
Vol 9 (21) ◽  
pp. 8493-8501 ◽  
Author(s):  
J. Quaas ◽  
O. Boucher ◽  
A. Jones ◽  
G. P. Weedon ◽  
J. Kieser ◽  
...  

Abstract. A weekly cycle in aerosol pollution and some meteorological quantities is observed over Europe. In the present study we exploit this effect to analyse aerosol-cloud-radiation interactions. A weekly cycle is imposed on anthropogenic emissions in two general circulation models that include parameterizations of aerosol processes and cloud microphysics. It is found that the simulated weekly cycles in sulfur dioxide, sulfate, and aerosol optical depth in both models agree reasonably well with those observed indicating model skill in simulating the aerosol cycle. A distinct weekly cycle in cloud droplet number concentration is demonstrated in both observations and models. For other variables, such as cloud liquid water path, cloud cover, top-of-the-atmosphere radiation fluxes, precipitation, and surface temperature, large variability and contradictory results between observations, model simulations, and model control simulations without a weekly cycle in emissions prevent us from reaching any firm conclusions about the potential aerosol impact on meteorology or the realism of the modelled second aerosol indirect effects.


2021 ◽  
Author(s):  
Gunter Stober ◽  
Ales Kuchar ◽  
Dimitry Pokhotelov ◽  
Huixin Liu ◽  
Han-Li Liu ◽  
...  

Abstract. Long-term and continuous observations of mesospheric/lower thermospheric winds are rare, but they are important to investigate climatological changes at these altitudes on time scales of several years, covering a solar cycle and longer. Such long time series are a natural heritage of the mesosphere/lower thermosphere climate, and they are valuable to compare climate models or long term runs of general circulation models (GCMs). Here we present a climatological comparison of wind observations from six meteor radars at two conjugate latitudes to validate the corresponding mean winds and atmospheric diurnal and semidiurnal tides from three GCMs, namely Ground-to-Topside Model of Atmosphere and Ionosphere for Aeronomy (GAIA), Whole Atmosphere Community Climate Model Extension (Specified Dynamics) (WACCM-X(SD)) and Upper Atmosphere ICOsahedral Non-hydrostatic (UA-ICON) model. Our results indicate that there are interhemispheric differences in the seasonal characteristics of the diurnal and semidiurnal tide. There also are some differences in the mean wind climatologies of the models and the observations. Our results indicate that GAIA shows a reasonable agreement with the meteor radar observations during the winter season, whereas WACCM-X(SD) shows a better agreement with the radars for the hemispheric zonal summer wind reversal, which is more consistent with the meteor radar observations. The free running UA-ICON tends to show similar winds and tides compared to WACCM-X(SD).


2021 ◽  
Author(s):  
Paolo Ruggieri ◽  
Marianna Benassi ◽  
Stefano Materia ◽  
Daniele Peano ◽  
Constantin Ardilouze ◽  
...  

<p>Seasonal climate predictions leverage on many predictable or persistent components of the Earth system that can modify the state of the atmosphere and of relant weather related variable such as temprature and precipitation. With a dominant role of the ocean, the land surface provides predictability through various mechanisms, including snow cover, with particular reference to Autumn snow cover over the Eurasian continent. The snow cover alters the energy exchange between land surface and atmosphere and induces a diabatic cooling that in turn can affect the atmosphere both locally and remotely. Lagged relationships between snow cover in Eurasia and atmospheric modes of variability in the Northern Hemisphere have been investigated and documented but are deemed to be non-stationary and climate models typically do not reproduce observed relationships with consensus. The role of Autumn Eurasian snow in recent dynamical seasonal forecasts is therefore unclear. In this study we assess the role of Eurasian snow cover in a set of 5 operational seasonal forecast system characterized by a large ensemble size and a high atmospheric and oceanic resolution. Results are compemented with a set of targeted idealised simulations with atmospheric general circulation models forced by different snow cover conditions. Forecast systems reproduce realistically regional changes of the surface energy balance associated with snow cover variability. Retrospective forecasts and idealised sensitivity experiments converge in identifying a coherent change of the circulation in the Northern Hemisphere. This is compatible with a lagged but fast feedback from the snow to the Arctic Oscillation trough a tropospheric pathway.</p>


2012 ◽  
Vol 12 (6) ◽  
pp. 13827-13880
Author(s):  
R. D. Field ◽  
C. Risi ◽  
G. A. Schmidt ◽  
J. Worden ◽  
A. Voulgarakis ◽  
...  

Abstract. Retrievals of the isotopic composition of water vapor from the Aura Tropospheric Emission Spectrometer (TES) have unique value in constraining moist processes in climate models. Accurate comparison between simulated and retrieved values requires that model profiles that would be poorly retrieved are excluded, and that an instrument operator be applied to the remaining profiles. Typically, this is done by sampling model output at satellite measurement points and using the quality flags and averaging kernels from individual retrievals at specific places and times. This approach is not reliable when the modeled meteorological conditions influencing retrieval sensitivity are different from those observed by the instrument at short time scales, which will be the case for free-running climate simulations. In this study, we describe an alternative, "categorical" approach to applying the instrument operator, implemented within the NASA GISS ModelE general circulation model. Retrieval quality and averaging kernel structure are predicted empirically from model conditions, rather than obtained from collocated satellite observations. This approach can be used for arbitrary model configurations, and requires no agreement between satellite-retrieved and modeled meteorology at short time scales. To test this approach, nudged simulations were conducted using both the retrieval-based and categorical operators. Cloud cover, surface temperature and free-tropospheric moisture content were the most important predictors of retrieval quality and averaging kernel structure. There was good agreement between the δD fields after applying the retrieval-based and more detailed categorical operators, with increases of up to 30‰ over the ocean and decreases of up to 40‰ over land relative to the raw model fields. The categorical operator performed better over the ocean than over land, and requires further refinement for use outside of the tropics. After applying the TES operator, ModelE had δD biases of −8‰ over ocean and −34‰ over land compared to TES δD, which were less than the biases using raw modeled δD fields.


Sign in / Sign up

Export Citation Format

Share Document