Multi-chemical fingerprinting of contrasted waters flowing within the unconventional Okavango Delta: evidence of an original ‘island reactor’

Author(s):  
Aline Dia ◽  
Olivier Dauteuil ◽  
Marc Jolivet ◽  
Mélanie Davranche ◽  
Martine Bouhnic-le-Coz ◽  
...  

<p>The 20.000 km<sup>2</sup> swamp of the Delta is organized into islands, flood plains and permanent and seasonal channels. Most of these islands display a surprising vegetation distribution composed of tree rings surrounding the islands and limiting an inner domain with scarce vegetation. Whereas the hydrology of the Okanvango wetlands is governed by a series of drivers such as, sedimentation, climate, tectonic and biological processes, the potential of the use of multi-chemical tracing has not been so far much investigated. The conducted study as part of a multidisciplinary project dedicated to the understanding of the functioning of the Delta, involved water samples collected both upstream and downsream the river, close to one of these islands and also recovered within the island as well. The main objective of this geochemical investigation was to better constrain the interactions prevailing in between these islands and the water chemical record. pH, conductivity (C), dissolved organic and inorganic carbon (DOC & DIC) concentrations were measured as well as those of major anion and cation and trace cation concentrations as well. Whichever the tracers are considered, two contrasted groups of samples were evidenced depending on their sampling positioning regarding the island. The samples recovered only within the island displayed pH around and over 9 and higher conductivities, whereas the other showed lower circumneutral pH values and conductivities as well. The high conductivities of the water samples fom the island also correspond to the highest DOC and DIC concentrations. The strong relationship linking the high DIC values and the high pH in the island samples records probably alkaline CO<sub>3</sub><sup>2-</sup> et HCO<sub>3</sub><sup>- </sup>-rich waters resulting from water-rock interactions with carbonates. The marked DOC enrichment has mostly to be related to microbial or photo-degradation of plant-derived organic matter and/or hydrological condition variations promoting DOC release. Significant, Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, NO<sub>2</sub><sup>-</sup>enrichments as well as major cation ones were also evidenced in the same group of samples within the island. However, the most surprising results are sourced in the trace element fingerprinting. This latter includes huge enrichment in heavy, critical metals and metalloids as well (e.g. Cr, Pb, V, REE, U, Th or As). Beyond the only marked REE-spike, Upper Continental Crust-normalized REE patterns displayed markedly contrasted shapes exhibiting two types of waters with circumneutral pH ones with MREE-enrichment, whereas the alkaline waters evidenced a classical continuous enrichment throughout the whole series from LREE to HREE and a positive Ce anomaly. The use of such multi-tracing allowed an efficient fingerprinting of two distint types of waters to get clues to further constrain both the dynamics of such islands and the functioning of the water system. Still in progress, the study will be completed by (i) the stable isotope analysis, (ii) the modeling of the minerals possibly at equilibrium with the waters and of the organic matter-trace element interactions, (iii) the speciation analysis of some enriched elements, (iv) the comparison between water and solid samples analyses and (v) the understanding of the relations in between the concentrations and locations in the hydrological system.</p>

2012 ◽  
Vol 62 (2) ◽  
pp. 143-172 ◽  
Author(s):  
Xiufang Hu ◽  
Christopher Jeans ◽  
Tony Dickson

ABSTRACT Hu, X-F, Jeans, C.V. and Dickson, J.A.D. 2012. Geochemical and stable isotope patterns of calcite cementation in the Upper Cretaceous Chalk, UK: Direct evidence from calcite-filled vugs in brachiopods. Acta GeologicaPolonica, 62 (2), 143-172. Warszawa. The history of research into the cementation of the Upper Cretaceous Chalk of the UK is reviewed. Calcitefilled vugs within the shell cavities of terebratulid brachiopods from the Cenomanian Chalk of eastern England have been investigated by cathodoluminesence imaging, staining, electron microprobe and stable isotope analysis. This has provided the first detailed analysis of the geochemistry of the Chalk’s cement. Two cement series, suboxic and anoxic, are recognized. Both start with a Mg-rich calcite with positive δ 13 C values considered to have been precipitated under oxic conditions influenced by aerobic ammonification. The suboxic series is characterized by positive δ 13 C values that became increasingly so as cementation progressed, reaching values of 3.5‰. Manganese is the dominant trace element in the earlier cement, iron in the later cement. Mnand Fe-reducing microbes influenced cement precipitation and the trace element and δ 13 C patterns. The anoxic series is characterized by δ 13 C values that became increasingly negative as cementation progressed, reaching values of -6.5‰. Trace elements are dominated by iron and manganese. Sulphate-reducing microbes influenced cement precipitation and the trace element and δ 13 C patterns. Both cement series are related closely to lithofacies and early lithification pre-dating the regional hardening of the Chalk. The suboxic series occurs in chalk which was continuously deposited and contained hematite pigment and limited organic matter. The anoxic series was associated with slow to nil deposition and hardground development in chalks that originally contained hematite pigment but no longer do so, and an enhanced supply of organic matter.


2013 ◽  
Vol 14 (4) ◽  
pp. 393-398

The occurrence of trihalomethanes (THMs) was studied in the drinking water samples from urban water supply network of Karachi city that served more than 18 million people. Drinking water samples were collected from 58 locations in summer (May-August) and winter (November-February) seasons. The major constituent of THMs detected was chloroform in winter (92.34%) and summer (93.07%), while the other THMs determined at lower concentrations. Summer and winter concentrations of total THMs at places exceed the levels regulated by UEPA (80 μg l-1) and WHO (100 μg l-1). GIS linked temporal variability in two seasons showed significantly higher median concentration (2.5%-23.06%) of THMs compared to winter.


2016 ◽  
Author(s):  
Justin T. Hensley ◽  
◽  
J. Bradford Hubeny ◽  
Neil E. Tibert ◽  
John W. King

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 343
Author(s):  
Anna Lavery ◽  
Conrad Ferris

The efficiency with which dairy cows convert dietary nitrogen (N) to milk N is generally low (typically 25%). As a result, much of the N consumed is excreted in manure, from which N can be lost to the environment. Therefore there is increasing pressure to reduce N excretion and improve N use efficiency (NUE) on dairy farms. However, assessing N excretion and NUE on farms is difficult, thus the need to develop proximate measures that can provide accurate estimates of nitrogen utilisation. This review examines a number of these proximate measures. While a strong relationship exists between blood urea N and urinary N excretion, blood sampling is an invasive technique unsuitable for regular herd monitoring. Milk urea N (MUN) can be measured non-invasively, and while strong relationships exist between dietary crude protein and MUN, and MUN and urinary N excretion, the technique has limitations. Direct prediction of NUE using mid-infrared analysis of milk has real potential, while techniques such as near-infrared spectroscopy analysis of faeces and manure have received little attention. Similarly, techniques such as nitrogen isotope analysis, nuclear magnetic resonance spectroscopy of urine, and breath ammonia analysis may all offer potential in the future, but much research is still required.


2017 ◽  
Vol 84 ◽  
pp. 277-285 ◽  
Author(s):  
Tyler L. Spano ◽  
Antonio Simonetti ◽  
Enrica Balboni ◽  
Corinne Dorais ◽  
Peter C. Burns

Sign in / Sign up

Export Citation Format

Share Document