Early warning signals before paroxysmal activity at Stromboli volcano, Italy

Author(s):  
Bellina Di Lieto ◽  
Pierdomenico Romano ◽  
Roberto Scarpa ◽  
Alan T. Linde ◽  
Agata Sangianantoni

<p>Mt. Stromboli is an active volcano, located near the coasts of Sicily (Italy), in the Mediterranean Sea. Its volcanic activity is characterized by mild and frequent explosions, sometimes interrupted by occasional episodes of more vigorous activity, which can be accompanied by lava flows and more energetic eruptions, known as “major” or “paroxysmal” eruptions, according to the energy dissipated during the event.</p><p>Stromboli produced vulcanian eruptions in 2003, 2007 and July-August 2019, which were well recorded by the INGV monitoring network. In particular the last three events are studied through records from borehole strainmeters, which allow us to infer many details of source dynamics. These events are clearly preceded by a slow strain buildup, starting several minutes before the paroxysms, which can be used in future for civil protection purposes. The eruptions then consist of two or more pulses, with oscillations ranging from several seconds, as in 2007, to some minutes, such as in 2019 and lasting from several minutes to one hour after the explosions.</p><p>Mechanisms involved in the triggering process of the vulcanian explosions include an increase of magma flux ascending from sources located from 2 to 5-7 km depths and morphological complexity in the upper feeding system.</p><p>A preliminary early-warning algorithm, based on an evaluation of strain rate change, has been defined: it has shown itself capable of ascertain the occurring eruptions minutes before their summit onset.</p><p>Valuable information are embedded in the data used in the current work, which could be used not only for scientific purposes but also from civil protection for monitoring reasons. Such a variety of possible usage needs the setting of principles and legal arrangements to be implemented in order to ensure that data will be properly and ethically managed and in turn can be used and accessed from the scientific community.</p><p>Particular care is needed in order to harmonize the different rules regarding use of data/information, to identify any potential legal issues related to Intellectual Property (IP) and to set up clear and consistent principles related to IP Rights.</p>

Author(s):  
David J. Peres ◽  
Antonino Cancelliere ◽  
Roberto Greco ◽  
Thom A. Bogaard

Abstract. Uncertainty in rainfall datasets and landslide inventories is known to have negative impacts on the assessment of landslide–triggering thresholds. In this paper, we perform a quantitative analysis of the impacts that the uncertain knowledge of landslide initiation instants have on the assessment of landslide intensity–duration early warning thresholds. The analysis is based on an ideal synthetic database of rainfall and landslide data, generated by coupling a stochastic rainfall generator and a physically based hydrological and slope stability model. This dataset is then perturbed according to hypothetical reporting scenarios, that allow to simulate possible errors in landslide triggering instants, as derived from historical archives. The impact of these errors is analysed by combining different criteria to single-out rainfall events from a continuous series and different temporal aggregations of rainfall (hourly and daily). The analysis shows that the impacts of the above uncertainty sources can be significant. Errors influence thresholds in a way that they are generally underestimated. Potentially, the amount of the underestimation can be enough to induce an excessive number of false positives, hence limiting possible landslide mitigation benefits. Moreover, the uncertain knowledge of triggering rainfall, limits the possibility to set up links between thresholds and physio-geographical factors.


2021 ◽  
Vol 76 (1) ◽  
pp. 85-101
Author(s):  
Luca Dei Cas ◽  
Maria Luisa Pastore ◽  
Andrea Pavan ◽  
Nicola Petrella

Abstract. In areas located near large rock cliffs, risk reduction by early warning monitoring systems highligts potentiality but also critical issues and limits. The paper examines two rock slope failures that occurred in a short time from each other near inhabited areas in the Italian Alps. The viscous behavior of the rock mass was reconstructed through data processing from ground-based Synthetic Aperture Radar Interferometry (InSAR), and elaboration of acceleration and speed curves. Landslides types and underlying complexity associated with rock detachment mechanisms suggest the identification of precautionary alarm thresholds for collapse forecasting. The analysis of financial outlay, both for mitigation works and for monitoring activities, highlight the adequacy and the opportunity to combine passive systems, like embankments or rockfall drapery meshes, with a reliable monitoring network for early warning.


Author(s):  
Erzsébet Győri ◽  
Arman Bulatovich Kussainov ◽  
Gyöngyvér Szanyi ◽  
Zoltán Gráczer ◽  
Kendebay Zhanabilovich Raimbekov ◽  
...  

Earthquakes are one of the most devastating natural disasters on Earth, causing sometimes huge economic losses and many human casualties. Since earthquake prediction is not yet possible, the purpose of civil protection is to reduce damage and protect human lives, in which the seismological networks of different countries play a very important role. Special applications of seismic networks are the early warning systems that can be used to protect vulnerable infrastructures using automated shutdown procedures, to stop high velocity trains and to save lives if the general public is notified about imminent strong ground shaking. In this paper, we describe the aims and operation of seismological networks, covering in more detail the early warning systems. Then we delineate the seismotectonic settings and seismicity in Hungary and Kazakhstan, furthermore, describe the operating seismological networks and the related scientific research areas with emphasis on civil protection. Hungary and Kazakhstan differ not only in the size of their territory, but also in their seismicity, therefore, in addition to the similarities, there are also significant differences between the aims and problems of their seismological networks.


2006 ◽  
Vol 54 (11-12) ◽  
pp. 257-263 ◽  
Author(s):  
R.P.S. Schilperoort ◽  
G. Gruber ◽  
C.M.L. Flamink ◽  
F.H.L.R. Clemens ◽  
J.H.J.M. van der Graaf

Most sewer system performance indicators are not easily measurable online at high frequencies in wastewater systems, which hampers real-time control with those parameters. Instead of using a constituent of wastewater, an alternative could be to use characteristics of wastewater that are relatively easily measurable in sewer systems and could serve as indicator parameters for the dilution process of wastewater. This paper focuses on the possibility to use the parameters of temperature and conductivity. It shows a good relation of temperature and conductivity with the dilution of DWF (dry weather flow) during WWF (wet weather flow) a monitoring station in Graz, Austria, as an example. The simultaneous monitoring of both parameters leads to valuable back-up information in case one parameter (temperature) shows no reaction to a storm event. However, for various reasons, anomalies occur in the typical behaviour of both parameters. The frequency and extent of these anomalies will determine the usefulness of the proposed parameters in a system for pollution-based real-time control. Both the normal behaviour and the anomalies will be studied further by means of trend and correlation analyses of data to be obtained from a monitoring network for the parameters of interest that is currently being set up in the Netherlands.


Author(s):  
Nikolaos Vavlas ◽  
Anastasia A. Kiratzi ◽  
Zafeiria Roumelioti

ABSTRACT We explore a hypothetical zero-latency earthquake early warning (EEW) system in Greece, aiming to provide alerts before warning thresholds of the intensity of ground motion are exceeded. Within the seismotectonic context of Greece, both shallow- and intermediate-depth earthquakes (along the Hellenic subduction zone) are plausible and, thus, examined. Using regionally applicable attenuation relations, we combine and adjust the methodologies of Minson et al. (2018) and Hoshiba (2020) to examine what are the minimum magnitudes required to invoke the warning thresholds at the user site. With simple modeling, we examine how fast an alert can be issued and what is the available warning time when taking into account delays due to finite-fault rupture propagation, alongside other delays. These computations are merged with delays introduced due to the present-day configuration of the Greek national monitoring network (varying spatial density of permanent monitoring stations). This approach serves as a tool to assess the feasibility of an EEW system at specific sites and to redesign the national permanent monitoring network to serve such a system more effectively (we provide results for four sites.). Warning times for on-land crustal earthquakes are found to be shorter, whereas for intermediate-depth earthquakes in Greece an EEW system is feasible (provides warning times of several tens of seconds at large cities, e.g., on Crete Island) even with the current configuration of the national monitoring network, which is quite sparse in the southern part of the country. The current network configuration also provides sufficient early warning (e.g., of the order of 10 s for a warning threshold of 0.05g) at the center of Athens from earthquakes of the eastern Gulf of Corinth—a zone posing elevated hazard in the broader area of the Greek capital. Several additional assumptions and factors affecting the operability of an EEW system in Greece (i.e., source process complexity and uncertainty in attenuation laws) are also discussed.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 614
Author(s):  
Jiuliang Xu ◽  
Zhihua Zhang ◽  
Xian Zhang ◽  
Muhammad Ishfaq ◽  
Jiahui Zhong ◽  
...  

China feeds approximately 22% of the global population with only 7% of the global arable land because of its surprising success in intensive agriculture. This outstanding achievement is partially overshadowed by agriculture-related large-scale environmental pollution across the nation. To ensure nutrition security and environmental sustainability, China proposed the Green Food Strategy in the 1990s and set up a specialized management agency, the China Green Food Development Center, with a monitoring network for policy and standard creation, brand authorization, and product inspection. Following these 140 environmental and operational standards, 15,984 green food companies provided 36,345 kinds of products in 2019. The cultivation area and annual domestic sales (CNY 465.7 billion) of green food accounted for 8.2% of the total farmland area and 9.7% of the gross domestic product (GDP) from agriculture in China. Herein, we systemically reviewed the regulation, standards, and authorization system of green food and its current advances in China, and then outlined its environmental benefits, challenges, and probable strategies for future optimization and upscaling. The rapid development of the green food industry in China suggests an applicable triple-win strategy for protecting the environment, promoting agroeconomic development, and improving human nutrition and health in other developing countries or regions.


2018 ◽  
Vol 229 ◽  
pp. 03015
Author(s):  
Eko Teguh Paripurno ◽  
Arif Rianto Budi Nugroho

Kelud Volcano is an active volcano in Indonesia. About 150 million meter cubic has erupted on 13 February 2013 at 22.30. People were successfully responded to the most significant eruption in history without any fatalities, by doing less than 2 hours evacuation, from 21.15 to 22.50. This research was conducted to show the success of the community in building the resilience process by applying a good system of community-based early warning. The study was conducted through documentary review and field assessment with participatory research methods, including mapping, transects, and historical studies. The result of research show that the community has four aspects of early warning system has been successfully fulfilled by communities. Those four aspects are (1) Knowledge of risk; (2) Monitoring and warning service; (3) Dissemination and communication; (4) Ability of the people to respond. Systematic data collection and risk assessment, with its pattern and tendency factors, ensured that disaster and vulnerability are well-known. Monitoring parameter to create accurate and timely pre-estimation has been ensured by disaster monitoring and early warning service. Communicating information and early warning ensured that the warning could be received by everyone that affected by disaster, risk, and its warning can be understood and useful. Establishing the people’s responsibility to ensure the response must be renewed, ability and local knowledge can be utilized, and people are ready to response warning. Simulation and training activities were implemented by the people within the disaster-prone area. Finally, the powerfulness of community preparedness can manage the tremendous level of a volcano eruption.


2020 ◽  
Author(s):  
Alberto Michelini ◽  
Gavin Iley ◽  
Öcal Necmioğlu ◽  
Gerhard Wotawa ◽  
Delia Arnold-Arias ◽  
...  

<p>Disaster risk managers need to react rapidly in case of catastrophic events, often trans-boundary, that can result in many casualties and threatening the lives of many others. This all has become of paramount importance given the growing exposure and vulnerability of people and societies.</p><p>In Europe, the revisited Union Civil Protection Mechanism (UCPM) is aimed at strengthening the international cooperation between the European Union (EU) and the Member States (MS) in the field of civil protection through the entire disaster risk management cycle. Under this framework, EU require scientific and evidence based-information to be able to take preparedness and response decisions in support to the MS. For such a purpose, the Emergency Response Coordination Centre (ERCC) has been established as the operational coordination hub for the EU's emergency management and operates in the Directorate-General for European Civil Protection and Humanitarian Aid Operations (DG ECHO).</p><p>The ARISTOTLE-ENHSP Consortium was awarded in 2016 the European Commission’s DG ECHO two-year “Pilot project in the area of Early Warning System for natural disasters” and, in 2018, the ongoing “European Natural Hazard Scientific Partnership” (ENHSP) contracts.  ARISTOTLE-ENHSP provides to ERCC a 24*7 operational service at pan-european and global level with the main aims of i.) filling the gap in knowledge that exists in the first 3 hours immediately after an event that has the potential to require a country to call on international help, ii.) providing longer term advice following an emergency and iii.) providing  advice when a potential so-called ‘forecastable’ hazardous event is starting to form (e.g., severe weather and flooding events and when possible to volcanic events). This operational service is supported by and based upon the scientific and innovation underlying activities of the developmental aspect of ARISTOTLE-ENHSP. </p><p>ARISTOTLE-ENHSP (http://aristotle.ingv.it) is a multi-hazard partnership comprising 15 partner institutions  (12 from EU Countries; 1 from non-EU countries and  2 European organizations) that combine operational and scientific expertise of a total of 6 inter-related hazard groups (Severe Weather, Floods, Volcanos, Earthquakes and earthquake-generated Tsunamis worldwide).</p><p> Exploiting the scalable approach of the ENHSP, in 2018 Forest Fires hazard has been added for the Pan-European domain. Each of these Hazard Groups brings together experts from the particular hazard domain to deliver a ‘collective multi-hazard analysis’ to the ERCC. During the “pilot project” (1-year), ARISTOTLE was activated 43 times with an almost even subdivision of events amongst meteo and geo hazards. A similar number of activations has occurred in the 1<sup>st</sup> year of the ongoing ARISTOTLE-ENHSP project. The presentation will illustrate the unique governance structure - modular and scalable in terms of hazards and partners -, the different modes of operation envisaged and the status and the solutions found by the project consortium to respond to the ERCC requirements.</p>


2009 ◽  
Vol 4 (4) ◽  
pp. 530-538 ◽  
Author(s):  
Kuo-Liang Wen ◽  
◽  
Tzay-Chyn Shin ◽  
Yih-Min Wu ◽  
Nai-Chi Hsiao ◽  
...  

The dense real-time earthquake monitoring network established in Taiwan is a strong base for the development of the earthquake early warning (EEW) system. In remarkable progress over the last decades, real-time earthquake warning messages are sent within 20 sec after an event using the regional EEW system with a virtual subnetwork approach. An onsite EEW approach using the first 3 sec of P waves has been developed and under online experimentation. Integrating regional and onsite systems may enable EEW messages to be issued within 10 sec after an event occurred in the near future. This study mainly discusses the methodology for determining the magnitude and ground motion of an event.


2011 ◽  
Vol 4 (4) ◽  
pp. 5037-5078
Author(s):  
H. Volten ◽  
J. B. Bergwerff ◽  
M. Haaima ◽  
D. E. Lolkema ◽  
A. J. C. Berkhout ◽  
...  

Abstract. We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM, the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet problems or interference problems by ammonium aerosols dissociating on tubes or filters. They measure concentrations up to at least 200 μg m−3, have a fast response, low maintenance demands, and a high up-time. The RIVM DOAS has a high accuracy of typically 0.15 μg m−3 for ammonia over 5-min averages and over a total light path of 100 m. The miniDOAS has been developed for application in measurement networks such as the Dutch National Air Quality Monitoring Network (LML). Compared to the RIVM DOAS it has a similar accuracy, but is significantly reduced in size, costs, and handling complexity. The RIVM DOAS and miniDOAS results showed excellent agreement (R2 = 0.996) during a field measurement campaign in Vredepeel, the Netherlands. This measurement site is located in an agricultural area and is characterized by highly variable, but on average high ammonia concentrations in the air. The RIVM-DOAS and miniDOAS results were compared to the results of the AMOR instrument, a continuous-flow wet denuder system, which is currently used in the LML. Averaged over longer time spans of typically a day the (mini)DOAS and AMOR results agree reasonably well, although an offset of the AMOR values compared to the (mini)DOAS results exists. On short time scales the (mini)DOAS shows a faster response and does not show the memory effects due to inlet tubing and transport of absorption fluids encountered by the AMOR. Due to its high accuracy, high uptime, low maintenance and its open path, the (mini)DOAS shows a good potential for flux measurements by using two (or more) systems in a gradient set-up and applying the aerodynamic gradient technique.


Sign in / Sign up

Export Citation Format

Share Document