Drought and heat-stress mortality risks: Assessing the role of climate change, socioeconomic vulnerabilities, and population growth

Author(s):  
Ali Ahmadalipour ◽  
Hamid Moradkhani

<p>Drought risk refers to the potential losses imposed by a drought event, and it is generally characterized as a function of vulnerability, hazard, and exposure. Here, we assess drought risk at a national level across Africa by considering climate change, population growth, and socioeconomic vulnerabilities. Drought vulnerability is quantified using a rigorous multi-dimensional framework based on 28 factors from six different sectors of economy, energy and infrastructure, health, land use, society, and water resources. Various analyses are conducted to assess the reliability and accuracy of the proposed drought vulnerability index (DVI). A multi-model and multi-scenario framework is employed to quantify drought hazard using a multitude of regional climate models. Drought risk is then assessed for 2 climate emission pathways (RCP4.5 and RCP8.5), 3 population scenarios, and 3 future vulnerability scenarios in each country during 2010-2100. Drought risk ratio is calculated for each scenario, and the role of each component (i.e. hazard, vulnerability, and exposure) is identified, and the associated uncertainties are also characterized. Results show that drought risk is expected to increase in future across Africa with varied rates for different models and scenarios. Although northern African countries indicate aggravating drought hazard, drought risk ratio is found to be highest in central African countries as a consequent of unprecedented vulnerability and population rise in the region. Results indicate that controlling the population growth is imperative for mitigating drought risk since it improves socioeconomic vulnerability and reduces potential exposure to drought. Meanwhile, climate change will considerably exacerbate drought and heat-stress hazards. Our findings show that global warming will escalate heat-stress mortality risk across Central Africa to unprecedented levels. It is revealed that unfortunately, the poorest countries (that have least contribution to climate change) are expected to be most impacted, and they will experience markedly higher risk ratios compared to the wealthier nations.</p>

Author(s):  
Damián Balfagón ◽  
Fátima Terán ◽  
Tadeu dos Reis de Oliveira ◽  
Claudete Santa-Catarina ◽  
Aurelio Gómez-Cadenas

Abstract Key message The activation of the antioxidant system under stress combination is a transmissible trait from the rootstock to the scion. Therefore, rootstock selection is key to improve crop performance and a sustainable production under changing climate conditions. Abstract Climate change is altering weather conditions such as mean temperatures and precipitation patterns. Rising temperatures, especially in certain regions, accelerates soil water depletion and increases drought risk, which affects agriculture yield. Previously, our research demonstrated that the citrus rootstock Carrizo citrange (Citrus sinensis × Poncirus trifoliata) is more tolerant than Cleopatra mandarin (C. reshni) to drought and heat stress combination, in part, due to a higher activation of the antioxidant system that alleviated damage produced by oxidative stress. Here, by using reciprocal grafts of both genotypes, we studied the importance of the rootstock on scion performance and antioxidant response under this stress combination. Carrizo rootstock, under stress combination, positively influenced Cleopatra scion by reducing H2O2 accumulation, increasing superoxide dismutase (SOD) and ascorbate peroxidase (APX) enzymatic activities and inducing SOD1, APX2 and catalase (CAT) protein accumulations. On the contrary, Cleopatra rootstock induced decreases in APX2 expression, CAT activity and SOD1, APX2 and CAT contents on Carrizo scion. Taken together, our findings indicate that the activation of the antioxidant system under stress combination is a transmissible trait from the rootstock to the scion and highlight the importance of the rootstock selection to improve crop performance and maintain citrus yield under the current scenario of climate change.


2020 ◽  
Author(s):  
Veit Blauhut ◽  
Claudia Teutschbein ◽  
Mathias N. Andersen ◽  
Manuela Brunner ◽  
Carmelo Cammalleri ◽  
...  

<p>In recent years, the adverse effects of drought have been experienced and perceived more severely and frequently all over Europe. These impacts are a result of the drought hazard and the socio-economic and ecological vulnerability. Due to the heterogeneity of Europe’s hydro-climatology and its cultural, political, social and economic diversity , the socio-economic and ecological impacts vary not only with respect to the extent, duration and severity of the drought, but also with the characteristics of affected societies, economic sectors and ecosystems. </p><p>The lack  of understanding the spatio-temporal differences in the drivers of drought risk hinders the successful mitigation of future impacts, and the design of suitable reactive and proactive drought action plans. Therefore, this study describes the European drought events of 2018 and 2019 beyond the hazard. The hypothesis to be proven is that similar hazard conditions result in different impacts due to national and sub-national differences in drought vulnerability, perception and drought-risk management. Based on research in 35 European countries, comparable national datasets on drought management and perception are established. For each of these countries, a uniform questionnaire was distributed to water management-related stakeholders at different administrative levels. A major focus of the questions was the perception and impacts of the recent droughts and current management strategies on a national and sub-national scale. The results of the questionnaires are also compared to country-scale profiles of past drought events for different drought types, i.e. meteorological, soil moisture, hydrological and vegetation drought, which were established based on information derived from the European Drought Observatory indicator system.</p><p>The results highlight a large diversity in the national perception of drought as a natural hazard and its impacts; but also a different spatial extent of 2018/2019 drought events At the same time,  existing drought management strategies are shown to increase national and sub-national resilience. The study, therefore, calls for international exchange and mutual learning to improve national and international drought governance and management.</p>


Author(s):  
Alphonsine Mukamuhirwa ◽  
Helena Persson Hovmalm ◽  
Hans Bolinsson ◽  
Rodomiro Ortiz ◽  
Obedi Nyamangyoku ◽  
...  

Despite the likely increasing co-occurrence of drought and heat stress, not least in equatorial regions, due to climate change, little is known about the combinational effect of these stresses on rice productivity and quality. This study evaluated the impact of simultaneous drought and temperature stress on growth, grain yield, and quality characteristics of seven rice cultivars from Rwanda, grown in climate chambers. Two temperature ranges—23/26 °C night/day and 27/30 °C night/day—together with single or repeated drought treatments, were applied during various plant developmental stages. Plant development and yield were highly influenced by drought, while genotype impacted the quality characteristics. The combination of a high temperature with drought at the seedling and tillering stages resulted in zero panicles for all evaluated cultivars. The cultivar ‘Intsindagirabigega’ was most tolerant to drought, while ‘Zong geng’ was the most sensitive. A “stress memory” was recorded for ‘Mpembuke’ and ‘Ndamirabahinzi’, and these cultivars also had a high content of bioactive compounds, while ’Jyambere’ showed a high total protein content. Thus, climate change may severely impact rice production. The exploitation of genetic diversity to breed novel rice cultivars that combine drought and heat stress tolerance with high nutritional values is a must to maintain food security.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 518 ◽  
Author(s):  
Nelimor ◽  
Badu-Apraku ◽  
Tetteh ◽  
N’guetta

Climate change is expected to aggravate the effects of drought, heat and combined drought and heat stresses. An important step in developing ‘climate smart’ maize varieties is to identify germplasm with good levels of tolerance to the abiotic stresses. The primary objective of this study was to identify landraces with combined high yield potential and desirable secondary traits under drought, heat and combined drought and heat stresses. Thirty-three landraces from Burkina Faso (6), Ghana (6) and Togo (21), and three drought-tolerant populations/varieties from the Maize Improvement Program at the International Institute of Tropical Agriculture were evaluated under three conditions, namely managed drought stress, heat stress and combined drought and heat stress, with optimal growing conditions as control, for two years. The phenotypic and genetic correlations between grain yield of the different treatments were very weak, suggesting the presence of independent genetic control of yield to these stresses. However, grain yield under heat and combined drought and heat stresses were highly and positively correlated, indicating that heat-tolerant genotypes would most likely tolerate combined drought and stress. Yield reduction averaged 46% under managed drought stress, 55% under heat stress, and 66% under combined drought and heat stress, which reflected hypo-additive effect of drought and heat stress on grain yield of the maize accessions. Accession GH-3505 was highly tolerant to drought, while GH-4859 and TZm-1353 were tolerant to the three stresses. These landrace accessions can be invaluable sources of genes/alleles for breeding for adaptation of maize to climate change.


2018 ◽  
Author(s):  
Ismail Dabanli

Abstract. Drought has multiple impacts on socioeconomic sectors and it is expected to increase in the coming years due to non-stationary nature of climate variability and change. Here, we investigated drought hazard, vulnerability, and risk based on hydro-meteorological and actual socio-economic data for provinces of Turkey. Although, drought vulnerability and risk assessment are essential parts of drought phenomenon, so far, lack of proper integrated drought risk assessment in Turkey (and elsewhere) has led to higher socio-economic impacts. Firstly, the Drought Hazard Index (DHI) is derived based on the probability occurrences of drought using Standardized Precipitation Index (SPI) to facilitate the understanding of drought phenomenon. Secondly, the Drought Vulnerability Index (DVI) is calculated by utilizing four socio-economic indicators to quantify drought impact on society. Finally, the Drought Risk Index (DRI) is obtained by multiplying DHI and DVI for provinces of Turkey to highlight the relative importance of hazard and vulnerability assessment for drought risk management. A set of drought hazard, vulnerability, and composite risk maps were then developed. The outputs of analysis reveal that among 81 administrative provinces in Turkey, 73 provinces are exposed to the low drought risk (0 


1965 ◽  
Vol 3 (4) ◽  
pp. 543-565 ◽  
Author(s):  
Marc Nerfin

In most African countries, the housing situation is most unsatisfactory, both in quality and quantity. The underlying factors are both demographic (population growth, rapid urbanisation) and economic (the under-development of productive resources). Although the poverty of housing is only one facet of the ‘pauperisation’ of the African masses, and although new needs arise directly from the process of development itself, yet the only possible framework for any modern housing policy is planning—economic, social, and spatial—in which the role of the public authorities is decisive both in the preparation and the implementation of the plan. Housing then becomes one element in the total modernisation of society.


2019 ◽  
Author(s):  
Ana Casanueva ◽  
Sven Kotlarski ◽  
Sixto Herrera ◽  
Andreas M. Fischer ◽  
Tord Kjellstrom ◽  
...  

Abstract. Along with the higher demand of bias-corrected data for climate impact studies, the number of available data sets has largely increased in the recent years. For instance, the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) constitutes a framework for consistently projecting the impacts of climate change across affected sectors and spatial scales. These data are very attractive for any impact application since they offer worldwide bias-corrected data based on Global Climate Models (GCMs). Complementary, the CORDEX initiative has incorporated experiments based on regionally-downscaled bias-corrected data by means of debiasing and quantile mapping (QM) methods. In light of this situation, it is challenging to distil the most accurate and useful information for climate services, but at the same time it creates a perfect framework for intercomparison and sensitivity analyses. In the present study, the trend-preserving ISIMIP method and empirical QM are applied to climate model simulations that were carried out at different spatial resolutions (CMIP5 GCM and EURO-CORDEX Regional Climate Models (RCMs), at approximately 150 km, 50 km and 12 km horizontal resolution, respectively) in order to assess the role of downscaling and bias correction in a multi-variate framework. The analysis is carried out for the wet bulb globe temperature (WBGT), a heat stress index that is commonly used in the context of working people and labour productivity. WBGT for shaded conditions depends on air temperature and dew point temperature, which in this work are individually bias-corrected prior to the index calculation. Our results show that the added value of RCMs with respect to the driving GCM is limited after bias correction. The two bias correction methods are able to adjust the central part of the WBGT distribution, but some added value of QM is found in WBGT percentiles and in the intervariable relationships. The evaluation in present climate of such multivariate indices should be performed with caution since biases in the individual variables might compensate, thus leading to better performance for the wrong reason. Climate change projections of WBGT reveal a larger increase of summer mean heat stress for the GCM than for the RCMs, related to the well-known reduced summer warming of the EURO-CORDEX RCMs. These differences are lowered after QM, since this bias correction method modifies the change signals and brings the results for GCM and RCMs closer to each other. We also highlight the need of large ensembles of simulations to assess the feasibility of the derived projections.


Author(s):  
Lei Zhang ◽  
Wei Song ◽  
Wen Song

Natural disasters worldwide regularly impact on human activities. As a frequently occurring natural disaster, drought has adverse impacts on agricultural production. The Lancang-Mekong River is a transnational river running through China and five Southeast Asian countries and it is a vital water resource for irrigation in the region. Drought in the Lancang-Mekong Region (LMR) has occurred frequently in recent years. Assessing the risk of drought in the region is essential for rational planning of agricultural production and formulation of drought relief measures. In this study, an assessment of drought risk has been achieved by combining the hazard and vulnerability assessments for drought. The assessment of the drought hazard depends mainly on the standardized precipitation index (SPI). The assessment of drought vulnerability takes into account various indicators such as climatic factors (e.g., crop water stress index), soil factors (e.g., available water capacity), and irrigation factors (e.g., irrigation support). The results reveal that: (1) Drought distribution in the LMR is characterized by a spreading of the drought to countries along the middle and lower reaches of the Mekong River. Countries located in the middle and lower reaches of the Mekong River are more prone to drought. Laos, Thailand, and Cambodia are the regions with higher and high-drought risk levels. (2) The spatial distributions for the drought hazard and the drought vulnerability in the LMR exhibit significant differences as evidenced in the mapping results. High-hazard and high-vulnerability areas are mainly distributed in the middle LMR, and the middle to higher hazard areas and the middle to higher vulnerability areas are mainly distributed in the south-central LMR, while the low-hazard areas and the low-vulnerability areas are mainly in the north. (3) The majority of planting areas for sugarcane, rice, and cassava are located in the high-hazard areas. The distributions of drought-prone and high-hazard areas also correspond to the main agricultural areas in the LMR.


Sign in / Sign up

Export Citation Format

Share Document