Molecular properties of dissolved organic matter (DOM) in the subterranean estuary of a high-energy beach: Finding proxies for reactive transport

Author(s):  
Hannelore Waska ◽  
Heike Simon ◽  
Janis Ahrens ◽  
Melanie Beck ◽  
Kai Schwalfenberg ◽  
...  

<p>Advective flows of sea- and fresh groundwater through coastal aquifers form a unique ecohydrological interface, the subterranean estuary. Here, freshly produced marine organic matter and oxygen mix with groundwater, which is low in oxygen and contains aged organic carbon from terrestrial sources. Along the underground flow paths, dissolved organic matter (DOM) is degraded and inorganic electron acceptors are successively used up. Because of the different DOM sources and ages, exact degradation pathways are often difficult to delineate, especially in high-energy environments with dynamic changes in beach morphology, source composition, and hydraulic gradients. From a case study site on a barrier island in the German North Sea, we present detailed biogeochemical data from pore water samples collected in the shallow layer of the subterranean estuary. The samples were taken along the major flow paths of recirculating sea water and discharging fresh, meteoric groundwater, and analyzed for physico-chemistry, electron acceptors, and dissolved organic carbon (DOC). DOM was isolated and measured with soft-ionization ultra-high-resolution mass spectrometry, and chemical DOM characteristics were derived by assigning exact molecular formulae to the thousands of intact masses found in each sample. Using geographic and physico-(geo)chemical parameters (longitude, salinity, dissolved silicate, dissolved iron) as indicators of water origin and residence time, we evaluated the behavior of chemical DOM characteristics (H/C and O/C ratios, aromaticity) along the underground flow paths. Overall, DOC concentrations and an H/C-based molecular lability boundary index (MLB) decreased with decreasing oxygen concentrations and parallel increases of dissolved (reduced) iron and dissolved silicate concentrations, in line with the assumption that high H/C ratios are a trait of labile DOM which is continuously degraded. On the other hand, aromaticity indices and relative abundances of a “humic-like” fluorescent DOM fraction increased along the flow paths, likely through accumulation of compounds less susceptible to microbial attack. Our data indicates that even in a highly complex advective flow system like the subterranean estuary, molecular properties of DOM can be harnessed to identify key, perhaps even site- and season-specific biogeochemical processes.</p>

2021 ◽  
Vol 8 ◽  
Author(s):  
Hannelore Waska ◽  
Heike Simon ◽  
Soeren Ahmerkamp ◽  
Janek Greskowiak ◽  
Janis Ahrens ◽  
...  

Advective flows of seawater and fresh groundwater through coastal aquifers form a unique ecohydrological interface, the subterranean estuary (STE). Here, freshly produced marine organic matter and oxygen mix with groundwater, which is low in oxygen and contains aged organic carbon (OC) from terrestrial sources. Along the groundwater flow paths, dissolved organic matter (DOM) is degraded and inorganic electron acceptors are successively used up. Because of the different DOM sources and ages, exact degradation pathways are often difficult to disentangle, especially in high-energy environments with dynamic changes in beach morphology, source composition, and hydraulic gradients. From a case study site on a barrier island in the German North Sea, we present detailed biogeochemical data from freshwater lens groundwater, seawater, and beach porewater samples collected over different seasons. The samples were analyzed for physico-chemistry (e.g., salinity, temperature, dissolved silicate), (reduced) electron acceptors (e.g., oxygen, nitrate, and iron), and dissolved organic carbon (DOC). DOM was isolated and molecularly characterized via soft-ionization ultra-high-resolution mass spectrometry, and molecular formulae were identified in each sample. We found that the islands’ freshwater lens harbors a surprisingly high DOM molecular diversity and heterogeneity, possibly due to patchy distributions of buried peat lenses. Furthermore, a comparison of DOM composition of the endmembers indicated that the Spiekeroog high-energy beach STE conveys chemically modified, terrestrial DOM from the inland freshwater lens to the coastal ocean. In the beach intertidal zone, porewater DOC concentrations, lability of DOM and oxygen concentrations, decreased while dissolved (reduced) iron and dissolved silicate concentrations increased. This observation is consistent with the assumption of a continuous degradation of labile DOM along a cross-shore gradient, even in this dynamic environment. Accordingly, molecular properties of DOM indicated enhanced degradation, and “humic-like” fluorescent DOM fraction increased along the flow paths, likely through accumulation of compounds less susceptible to microbial consumption. Our data indicate that the high-energy beach STE is likely a net sink of OC from the terrestrial and marine realm, and that barrier islands such as Spiekeroog may act as efficient “digestors” of organic matter.


2021 ◽  
Author(s):  
Liza McDonough ◽  
Megan Behnke ◽  
Robert Spencer ◽  
Christopher Marjo ◽  
Martin Andersen ◽  
...  

<p>Dissolved organic matter (DOM) comprises a large and complex range of molecules with varying mass, elemental arrangements, conformation, and polarity. These diverse molecules interact with the environment resulting in changes to their molecular character and reactivity over time. Significant advances in our understanding of the molecular character of reactive and recalcitrant DOM have been made throughout the past decade, largely due to the development of ultra-high resolution techniques such as Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). This understanding, however, is almost entirely based on surface water environments. Here, we investigate how the molecular properties of DOM change due to reactions occurring in a groundwater environment over time. We use FT-ICR MS combined with liquid chromatography organic carbon detection (LC-OCD), fluorescence and radiocarbon (<sup>14</sup>C) dissolved organic carbon (DOC) for a range of groundwater DOM samples, including the oldest DOC reported from a site which is not impacted by sedimentary organic carbon inputs (25,310 ± 600 years BP). Our results indicate that polarity and nominal oxidation state of carbon (NOSC) play a major role in the reactivity of groundwater DOM, with a preferential removal of hydrophilic, high oxygen to carbon (O/C) ratio molecules over time (r<sub>s</sub> = 0.91, p = 2.4 x 10<sup>-6</sup>). We also note an increase in likely bio-produced molecules containing low numbers of O atoms in deep methanogenic groundwater environments. These molecular formulae appear to accumulate due to the prolonged anoxic conditions which would not be experienced by surface water DOM. The decline in NOSC with increasing average bulk groundwater DOC age contrasts with findings from marine environments where NOSC has been reported to increase over time. Furthermore, the proportion of specific molecular formulae which are stable in marine waters, decline in groundwater as <sup>14</sup>C<sub>DOC</sub> decreases (r<sub>s</sub> = 0.68, p = 6.9 x 10<sup>-3</sup>) suggesting that current indicators of DOM degradation state derived from marine environments are not applicable to groundwater environments. Our research shows that the molecular character of reactive DOM in groundwater differs from that of surface water due to exposure to different environments and processing mechanisms, suggesting that it is the interaction between external environmental factors and intrinsic DOM molecular properties which control DOM recalcitrance.</p>


Author(s):  
Jeonghyun Kim ◽  
Yeseul Kim ◽  
Sung Eun Park ◽  
Tae-Hoon Kim ◽  
Bong-Guk Kim ◽  
...  

AbstractIn Jeju Island, multiple land-based aquafarms were fully operational along most coastal region. However, the effect of effluent on distribution and behaviours of dissolved organic matter (DOM) in the coastal water are still unknown. To decipher characteristics of organic pollution, we compared physicochemical parameters with spectral optical properties near the coastal aquafarms in Jeju Island. Absorption spectra were measured to calculate the absorption coefficient, spectral slope coefficient, and specific UV absorbance. Fluorescent DOM was analysed using fluorescence spectroscopy coupled with parallel factor analysis. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured using high-temperature catalytic oxidation. The DOC concentration near the discharge outlet was twice higher than that in natural groundwater, and the TDN concentration exponentially increased close to the outlet. These distribution patterns indicate that aquafarms are a significant source of DOM. Herein, principal component analysis was applied to categorise the DOM origins. There were two distinct groups, namely, aquaculture activity for TDN with humic-like and high molecular weights DOM (PC1: 48.1%) and natural biological activity in the coastal water for DOC enrichment and protein-like DOM (PC2: 18.8%). We conclude that the aquafarms significantly discharge organic nitrogen pollutants and provoke in situ production of organic carbon. Furthermore, these findings indicate the potential of optical techniques for the efficient monitoring of anthropogenic organic pollutants from aquafarms worldwide.


2008 ◽  
Vol 5 (2) ◽  
pp. 281-298 ◽  
Author(s):  
P. Raimbault ◽  
N. Garcia ◽  
F. Cerutti

Abstract. During the BIOSOPE cruise the RV Atalante was dedicated to study the biogeochemical properties in the South Pacific between the Marquesas Islands (141° W–8° S) and the Chilean upwelling (73° W–34° S). Over the 8000 km covered by the cruise, several different trophic situations were encountered, in particular strong oligotrophic conditions in the South Pacific Gyre (SPG, between 123° W and 101° W). In this isolated region, nitrate was undetectable between the surface and 160–180 m and only trace quantities (<20 nmoles l−1) of regenerated nitrogen (nitrite and ammonium) were detected, even in the subsurface maximum. Integrated nitrate over the photic layer, which reached 165 m, was close to zero. Despite this severe nitrogen-depletion, phosphate was always present in significant concentrations (≈0.1 μmoles l−1), while silicic acid was maintained at low but classical oceanic levels (≈1 μmoles l−1). In contrast, the Marquesas region (MAR) to the west and Chilean upwelling (UPW) to the east were characterized by high nutrient concentrations, one hundred to one thousand fold higher than in the SPG. The distribution of surface chlorophyll reflected the nitrate gradient, the lowest concentrations (0.023 nmoles l−1) being measured at the centre of the SPG, where integrated value throughout the photic layer was very low (≈ 10 mg m−2). However, due to the relatively high concentrations of chlorophyll-a encountered in the DCM (0.2 μg l−1), chlorophyll-a concentrations throughout the photic layer were less variable than nitrate concentrations (by a factor 2 to 5). In contrast to chlorophyll-a, integrated particulate organic matter (POM) remained more or less constant along the study area (500 mmoles m−2, 60 mmoles m−2 and 3.5 mmoles m−2 for particulate organic carbon, particulate organic nitrogen and particulate organic phosphorus, respectively), with the exception of the upwelling, where values were two fold higher. The residence time of particulate carbon in the surface water was only 4–5 days in the upwelling, but up to 30 days in the SPG, where light isotopic δ15N signal noted in the suspended POM suggests that N2-fixation provides a dominant supply of nitrogen to phytoplankton. The most striking feature was the large accumulation of dissolved organic matter (DOM) in the SPG compared to the surrounding waters, in particular dissolved organic carbon (DOC) where concentrations were at levels rarely measured in oceanic waters (>100 μmoles l−1). Due to this large pool of DOM in the SPG photic layer, integrated values followed a converse geographical pattern to that of inorganic nutrients with a large accumulation in the centre of the SPG. Whereas suspended particulate matter in the mixed layer had a C/N ratio largely conforming to the Redfield stochiometry (C/N≈6.6), marked deviations were observed in this excess DOM (C/N≈16 to 23). The marked geographical trend suggests that a net in situ source exists, mainly due to biological processes. Thus, in spite of strong nitrate-depletion leading to low chlorophyll biomass, the closed ecosystem of the SPG can accumulate large amounts of C-rich dissolved organic matter. The implications of this finding are examined, the conclusion being that, due to weak lateral advection, the biologically produced dissolved organic carbon can be accumulated and stored in the photic layer for very long periods. In spite of the lack of seasonal vertical mixing, a significant part of new production (up to 34%), which was mainly supported by dinitrogen fixation, can be exported to deep waters by turbulent diffusion in terms of DOC. The diffusive rate estimated in the SPG (134 μmolesC m−2 d−1), was quite equivalent to the particles flux measured by sediments traps.


2013 ◽  
Vol 118 (1-3) ◽  
pp. 321-337 ◽  
Author(s):  
Shatrughan Singh ◽  
Shreeram Inamdar ◽  
Myron Mitchell ◽  
Patrick McHale

2014 ◽  
Vol 11 (10) ◽  
pp. 14097-14132 ◽  
Author(s):  
L. Tremblay ◽  
J. Caparros ◽  
K. Leblanc ◽  
I. Obernosterer

Abstract. Natural iron fertilization of high-nutrient low-chlorophyll (HNLC) waters induces annually occurring spring phytoplankton blooms off Kerguelen Islands (Southern Ocean). To examine the origin and fate of particulate and dissolved organic matter (POM and DOM), D- and L-amino acids (AA) were quantified at bloom and HNLC stations. Total hydrolysable AA accounted for 21–25% of surface particulate organic carbon (%POCAA) at the bloom sites, but for 10% at the HNLC site. A marked decrease in %POCAA with depth was observed at the most productive stations leading to values between 3 and 5% below 300 m depth. AA contributed to only 0.9–4.4% of dissolved organic carbon (%DOCAA) at all stations. The only consistent vertical trend was observed at the most productive station (A3-2) where %DOCAA decreased from ∼2% in the surface waters to 0.9% near 300 m. These AA yields and other markers revealed that POM and DOM were more rapidly altered or mineralized at the bloom sites compared to the HNLC site. Different molecular markers indicated that POM mostly originated from diatoms and bacteria. The estimated average proportion of POM from intact phytoplankton cells in surface waters was 45% at the bloom station A3-2, but 14% at the HNLC site. Estimates based on D-AA yields indicated that ∼15% of POM and ∼30% of DOM was of bacterial origin (cells and cell fragments) at all stations. Surprisingly, the DOM in HNLC waters appeared less altered than the DOM from the bloom, had slightly higher dissolved AA concentrations, and showed no sign of alteration within the water column. Unfavorable conditions for bacterial degradation in HNLC regions can explain these findings. In contrast, large inputs of labile organic molecules and iron, likely stimulate the degradation of organic matter (priming effect) and the production of more recalcitrant DOM (microbial carbon pump) during iron-fertilized blooms.


Sign in / Sign up

Export Citation Format

Share Document