Where does the water come from? Variations in soil water uptake depth in a beech forest during the 2018 drought

Author(s):  
Arthur Geßler ◽  
Lukas Bächli ◽  
Kerstin Treydtre ◽  
Matthias Saurer ◽  
Matthias Häni ◽  
...  

<p>Water uptake under variable soil water supply is highly critical for the functioning of trees and the services provided by forests. Current climate projections predict an increasing variability of precipitation and thus a higher frequency of droughts alternating with extreme precipitation events. Reduced water availability is the most critical driver for tree mortality and impairment of trees’ functions. Under variable water supply, both the ability of a plant species to utilize remaining water under drought and to immediately capitalize on soil rewetting from subsequent rainfall events will be crucial for its survival and competitiveness. High uncertainty still exists regarding the ecohydrological belowground interactions at the soil–root interface on short to seasonal time scales.</p><p>To overcome previous limitations, we carried out high-resolution <em>in situ</em> observations of δ<sup>18</sup>O in soil and xylem water to track the water uptake of beech trees based on the approaches of Volkmann et al. (2016a & b) in the hot dry summer 2018. We set up a laser isotope system to continuously probe the δ<sup>18</sup>O signature in the water vapor in equilibrium with the soil water at different soil depths and with the xylem of beech trees in a forest in Switzerland and applied a Bayesian isotope mixing model (BIMM) to resolve the origin of the water taken up. Moreover, we installed xylem flow sensors, dendrometers and soil moisture sensors in the trees.</p><p>Mid of June the drought period started with extended phases of high temperature and only infrequent precipitation. At the same time, soil water content sharply decreased, especially in the upper soil layers and transpiration as well as radial growth started to decline, and this pattern became more pronounced until the end of August. In the soil water, strong <sup>18</sup>O enrichment in the upper 5 cm and slighter enrichment in 15 cm developed during this period. The BIMM results indicated that tree xylem water was made up by > 80% of shallow soil water (0-15 cm) at the onset of the drought and that this contribution continuously dropped to < 20% by the end of August, when deeper soil water and groundwater became more important. End of August, intensive rainfall events along with decreasing temperatures terminated the drought period when shallow soil water pools became partially replenished, and transpiration increased again. Within days, the contribution of shallow soil water to tree xylem water increased and reached a share of > 70% a couple of weeks after the end of the drought.  With the<em> in situ</em> method applied here, real-time information of the plasticity of soil water use becomes available and we can l trace the effect of drought and drought release on root activity of trees in different soil depths.</p><p> </p><p><strong>Volkmann THM, Haberer K, Gessler A, Weiler M. 2016a.</strong>High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface. The New phytologist<strong>210</strong>: 839-849.</p><p><strong>Volkmann THM, Kühnhammer K, Herbstritt B, Gessler A, Weiler M. 2016b.</strong>A method for in situ monitoring of the isotope composition of tree xylem water using laser spectroscopy. Plant, Cell and Environment<strong>9</strong>: 2055–2063.</p>

2021 ◽  
Author(s):  
Jessica Landgraf ◽  
Dörthe Tetzlaff ◽  
Maren Dubbert ◽  
David Dubbert ◽  
Aaron Smith ◽  
...  

Abstract. Root water uptake is an important critical zone process, as plants can tap various water sources and transpire these back into the atmosphere. However, knowledge about the spatial and temporal dynamics of root water uptake and associated water sources at both high temporal resolution (e.g. daily) and over longer time periods (e.g. seasonal) is still limited. We used cavity ring-down spectroscopy (CRDS) for continuous in situ monitoring of stable water isotopes in soil and xylem water for two riparian willow (Salix alba) trees over the growing season (May to October) of 2020. This was complemented by isotopic sampling of local precipitation, groundwater and stream water in order to help constrain the potential sources of root water uptake. A local flux tower, together with sap flow monitoring, soil moisture measurements and dendrometry were also used to provide the hydroclimatic and ecohydrological contexts for in situ isotope monitoring. In addition, bulk samples of soil water and xylem water were collected to corroborate the continuous in situ data. The monitoring period was characterised by frequent inputs of precipitation, interspersed by warm dry periods which resulted in variable moisture storage in the upper 20 cm of the soil profile and dynamic isotope signatures. This variability was greatly damped in 40 cm and the isotopic composition of the sub-soil and groundwater was relatively stable. The isotopic composition and dynamics of xylem water was very similar to that of the upper soil and analysis using a Bayesian mixing model inferred that overall ~90 % of root water uptake was derived from the upper soil profile. Sap flow and dendrometry data indicated that soil water availability did not seriously limit transpiration during the study period, though there was a suggestion that deeper (> 40 cm) soil water might provide a higher proportion of root water uptake (~30 %) in a drier period in the late summer. The study demonstrates the utility of prolonged real time monitoring of natural stable isotope abundance in soil-vegetation systems, which has great potential for further understanding of ecohydrological partitioning under changing hydroclimatic conditions.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3471
Author(s):  
Zhiqiang Du ◽  
Chunlei Xia ◽  
Longwen Fu ◽  
Nan Zhang ◽  
Bowei Li ◽  
...  

A cost-effective and low-power-consumption underwater microscopic imaging system was developed to capture high-resolution zooplankton images in real-time. In this work, dark-field imaging was adopted to reduce backscattering and background noise. To produce an accurate illumination, a novel illumination optimization scheme for the light-emitting diode (LED) array was proposed and applied to design a lighting system for the underwater optical imaging of zooplankton. A multiple objective genetic algorithm was utilized to find the best location of the LED array, which resulted in the specific illumination level and most homogeneous irradiance in the target area. The zooplankton imaging system developed with the optimal configuration of LEDs was tested with Daphnia magna under laboratory conditions. The maximal field of view was 16 mm × 13 mm and the optical resolution was 15 μm. The experimental results showed that the imaging system developed could capture high-resolution and high-definition images of Daphnia. Subsequently, Daphnia individuals were accurately segmented and their geometrical characters were measured by using a classical image processing algorithm. This work provides a cost-effective zooplankton measuring system based on an optimization illumination configuration of an LED array, which has a great potential for minimizing the investment and operating costs associated with long-term in situ monitoring of the physiological state and population conditions of zooplankton.


2015 ◽  
Vol 76 (4) ◽  
pp. 370-376
Author(s):  
Andrzej Boczoń ◽  
Michał Wróbel

Abstract Periodically occurring drought is typical for the climate of Poland. In habitats supplied exclusively with rain water, tree stands are frequently exposed to the negative effects of water deficit in the soil. The aim of this study was to examine the water uptake and consumption of two individual Scots pine trees under drought conditions. The trees were located at different positions within the stand and at the time of study were over 150 years old. Soil moisture, availability of soil water and the quantity of water uptake by the individual trees were examined by measuring the water velocity inside the trunks (Thermal Dissipation Probe method). Two periods of intense drought occurred in the summer 2006 only a few days apart. Before the drought, pine No. 1 (dominant) took up 66.7 dm3 water per day and pine No. 2 (co-dominant) took up 52.3 dm3 per day. The observed responses of the examined pines to the first period of drought were similar: the low soil water content resulted in a suppression of water uptake in both trees. After the end of the drought period however, the recovery responses of the two trees were different. Pine No. 1 resumed water uptake at values similar to those before the drought. Pine No. 2 on the other hand did not resume water uptake. We conclude that in case of this second tree the vegetative season possibly ended already at the end of June.


2018 ◽  
Vol 40 (3) ◽  
pp. 1409
Author(s):  
P. Giannoulopoulos ◽  
A. Poulovassilis

The following work refers to an experimental methodology employed for in situ monitoring of specific soil water fluxes constituting water balance components. The test area is located in the plain of Argos - Greece, within an orange grove. A micrometeorological station was installed in the site, equipped with several sensors for real time monitoring of various atmospheric parameters as well as water content and temperature in the soil profile. The soil profile was made accessible for sampling through a rectangular pit which was excavated close to the station. The soil water content was monitored making use ofTDR sensors which were calibrated against the traditional neutron probe technique and also by soil sampling. Tensiometeres were also installed in four different depths for monitoring the matrix potential. A software programme was developed for the analysis and the evaluation of the data collected in a 10 - minute time step. The analysis of the data showed that the three - year average of Actual Evapotranspiration, in this irrigated field, was approximately 857 mm, out of which almost 600mm occur between April and September and 260 mm in the winter period. Those results show that there is no significant water surplus for deep infiltration and aquifer recharge in clayey and clay - loam soils in this region.


2021 ◽  
Vol 294 ◽  
pp. 106373
Author(s):  
Meng-Ya Sun ◽  
Bin Shi ◽  
Cheng-Cheng Zhang ◽  
Xing Zheng ◽  
Jun-Yi Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document