Hands-on activities in climate education at school: three successful examples

Author(s):  
Gunta Kalvane ◽  
Andis Kalvans

<p>According to studies and surveys, Latvian society is sceptical of climate changes – it is characterised by short-term thinking. STEM teachers acknowledge that the climate issue is one of the most difficult and incomprehensible topics for students. Students' understanding of climate change issues is low because there is poor understanding of concept of the climate itself and physical processes shaping the climate system. Students do not see the consequences and responsibilities of their actions. In addition, there is little climate-related teaching materials available in Latvian language hampering incorporation climate issues in the regular school programs or informal educational activities.</p><p>In collaboration with youth NGO, Latvian 4H club, Faculty of Geography and Earth Sciences at University of Latvia have developed several teaching materials, easy-to-read instructions and video demonstration in Latvian for hands on climate education activities. Low-cost and easily available materials and reagents have used for all the activities. Some of the examples: what is the difference in air temperature in a jar with and without CO<sub>2</sub> heated by incandescent light bulb or how the water pH changes when CO<sub>2</sub> is bubbled (blown) through it with a straw?</p><p>In the “60 elements in your pocket” project, we have dismantled mobile phones and discussed what raw materials have used to build and what are the environmental consequences of extracting them and demonstrating actual mineral samples. We discuss with students what are our consumption habits, and how can everyone mitigate the effects of climate change?</p><p>We strongly believe that hands-on activities have to be a crucial part in any climate-related education program. Experiments and demonstrations need to be simple, understandable, and show the complexity of climate and economic system.</p>

2015 ◽  
Vol 77 (4) ◽  
pp. 258-263 ◽  
Author(s):  
Amanda L. Kelley ◽  
Paul R. Hanson ◽  
Stephanie A. Kelley

Ocean acidification, a product of CO2 absorption by the world’s oceans, is largely driven by the anthropogenic combustion of fossil fuels and has already lowered the pH of marine ecosystems. Organisms with calcium carbonate shells and skeletons are especially susceptible to increasing environmental acidity due to reduction in the saturation state of CaCO3 that accompanies ocean acidification. Creating a connection between human-mediated changes to our environment and the effect it will have on biota is crucial to establishing an understanding of the potential effects of global climate change. We outline two low-cost laboratory experiments that eloquently mimic the biochemical process of ocean acidification on two timescales, providing educators with hands-on, hypothesis-driven experiments that can easily be conducted in middle and high school biology or environmental science courses.


2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


Author(s):  
SAFITRI NURHIDAYATI ◽  
RIZKI AMELYA SYAM

This study aims to analyze whether the difference that occurs in the cost of raw materials, direct labor, and factory overhead costs between the standard costs and the actual costs in PLTU LATI is a difference that is favorable or unfavorable. Data collection techniques with field research and library research. The analytical tool used is the analysis of the difference in raw material costs, the difference in direct labor costs and the difference in factory overhead costs. The hypothesis in this study is that the difference allegedly occurs in the cost of raw materials, direct labor costs, and factory overhead costs at PT Indo Pusaka Berau Tanjung Redeb is a favorable difference. The results showed that the difference in the cost of producing MWh electricity at PT Indo Pusaka Berau Tanjung Redeb in 2018, namely the difference in the price of raw material costs Rp. 548,029.80, - is favorable, the difference in quantity of raw materials is Rp. 957,216,602, - is (favorable) , the difference in direct labor costs Rp 2,602,642,084, - is (unfavorable), and the difference in factory overhead costs Rp 8,807,051,422, - is (favorable) This shows that the difference in the overall production cost budget is favorable or profitable. This beneficial difference shows that the company is really able to reduce production costs optimally in 2018.  


2019 ◽  
Author(s):  
Yu Wang ◽  
Nachuan Yang ◽  
Yi Shuai ◽  
Yunpeng Zhang ◽  
Kanghua Chen

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2910
Author(s):  
Chaoyi Ding ◽  
Chun Liu ◽  
Ligang Zhang ◽  
Di Wu ◽  
Libin Liu

The high cost of development and raw materials have been obstacles to the widespread use of titanium alloys. In the present study, the high-throughput experimental method of diffusion couple combined with CALPHAD calculation was used to design and prepare the low-cost and high-strength Ti-Al-Cr system titanium alloy. The results showed that ultra-fine α phase was obtained in Ti-6Al-10.9Cr alloy designed through the pseudo-spinodal mechanism, and it has a high yield strength of 1437 ± 7 MPa. Furthermore, application of the 3D strength model of Ti-6Al-xCr alloy showed that the strength of the alloy depended on the volume fraction and thickness of the α phase. The large number of α/β interfaces produced by ultra-fine α phase greatly improved the strength of the alloy but limited its ductility. Thus, we have demonstrated that the pseudo-spinodal mechanism combined with high-throughput diffusion couple technology and CALPHAD was an efficient method to design low-cost and high-strength titanium alloys.


2021 ◽  
Author(s):  
Junzhen Ren ◽  
Pengqing Bi ◽  
Jianqi Zhang ◽  
Jiao Liu ◽  
Jingwen Wang ◽  
...  

Abstract Developing photovoltaic materials with simple chemical structures and easy synthesis still remains a major challenge in the industrialization process of organic solar cells (OSCs). Herein, an ester substituted poly(thiophene vinylene) derivative, PTVT-T, was designed and synthesized in very few steps by adopting commercially available raw materials. The ester groups on the thiophene units enable PTVT-T to have a planar and stable conformation. Moreover, PTVT-T presents a wide absorption band and strong aggregation effect in solution, which are the key characteristics needed to realize high performance in non-fullerene-acceptor (NFA)-based OSCs. We then prepared OSCs by blending PTVT-T with three representative fullerene- and NF-based acceptors, PC71BM, IT-4F and BTP-eC9. It was found that PTVT-T can work well with all the acceptors, showing great potential to match new emerging NFAs. Particularly, a remarkable power conversion efficiency of 16.20% is achieved in a PTVT-T:BTP-eC9-based device, which is the highest value among the counterparts based on PTV derivatives. This work demonstrates that PTVT-T shows great potential for the future commercialization of OSCs.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 500-510
Author(s):  
Xiaoguang Ying ◽  
Jieyuan He ◽  
Xiao Li

Abstract An imprinted electrospun fiber membrane was developed for the detection of volatile organic acids, which are key components of human body odor. In this study, hexanoic acid (HA) was selected as the target, polymethyl methacrylate (PMMA) was used as the substrate, and colorimetric detection of HA was achieved by a bromocresol purple (BCP) chromogenic agent. The results showed that the morphology of the fiber membrane was uniform and continuous, and it showed excellent selectivity and specificity to HA. Photographs of the color changes before and after fiber membrane adsorption were recorded by a camera and quantified by ImageJ software by the difference in gray value (ΔGray). This method is simple, intuitive, and low cost and has great potential for application in human odor analysis.


2021 ◽  
Vol 13 (4) ◽  
pp. 2077
Author(s):  
Mahnaz Sarlak ◽  
Laura Valeria Ferretti ◽  
Rita Biasi

About two billion rural individuals depend on agricultural systems associated with a high amount of risk and low levels of yield in the drylands of Asia, Africa, and Latin America. Human activities, climate change and natural extreme events are the most important drivers of desertification. This phenomenon has occurred in many regions of Iran, particularly in the villages in the periphery of the central desert of Iran, and has made living in the oases so difficult that the number of abandoned villages is increasing every year. Land abandonment and land-use change increase the risk of desertification. This study aims to respond to the research questions: (i) does the planning of green infrastructures on the desert margin affect the distribution and balance of the population? (ii) how should the green belt be designed to have the greatest impact on counteracting desertification?, and (iii) does the design of productive landscape provide the solution? Through a wide-ranging and comprehensive approach, this study develops different scenarios for designing a new form of green belt in order to sustainably manage the issues of environmental protection, agricultural tradition preservation and desertification counteraction. This study proposes a new-traditional greenbelt including small low-cost and low-tech projects adapted to rural scale.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1186
Author(s):  
Carmen S. Favaro-Trindade ◽  
Fernando E. de Matos Junior ◽  
Paula K. Okuro ◽  
João Dias-Ferreira ◽  
Amanda Cano ◽  
...  

Nanoencapsulation via spray cooling (also known as spray chilling and spray congealing) has been used with the aim to improve the functionality, solubility, and protection of drugs; as well as to reduce hygroscopicity; to modify taste and odor to enable oral administration; and many times to achieve a controlled release profile. It is a relatively simple technology, it does not require the use of low-cost solvents (mostly associated to toxicological risk), and it can be applied for lipid raw materials as excipients of oral pharmaceutical formulations. The objective of this work was to revise and discuss the advances of spray cooling technology, with a greater emphasis on the development of lipid micro/nanoparticles to the load of active pharmaceutical ingredients for oral administration.


Eos ◽  
1988 ◽  
Vol 69 (25) ◽  
pp. 668
Author(s):  
S.I. Rasool

Sign in / Sign up

Export Citation Format

Share Document