Tephrostratigraphy and tephrochronology of a 430 ka sediment record from the Fucino Basin, central Italy

Author(s):  
Niklas Leicher ◽  
Biagio Giaccio ◽  
Bernd Wagner ◽  
Giorgio Mannella ◽  
Lorenzo Monaco ◽  
...  

<p>The Fucino Basin is the largest and probably the only Central Apennine basin hosting a thick, continuous lacustrine sediment succession documenting the environmental history from the Early Pleistocene to recent historical times. The basin is located downwind of the Italian volcanic districts (< 150 km), which makes it the best candidate available in the central Mediterranean to construct a long and continuous tephrostratigraphic and tephrochronological record. Tephrostratigraphic investigations conducted on a first core (F1-F3) revealed 21 tephra layers of different Italian volcaoes. Among them several widespread and well-dated key Mediterranean marker tephra layers (e.g., Neapolitan Yellow Tuff, Y-1, Campanian Ignimbrite, Y-7, X-5, X-6, and Taurano Ignimbrite) were recognized and allowed to date, together with <sup>40</sup>Ar/<sup>39</sup>Ar ages directly obtained from the Fucino tephra layers, the record back to 190 ka.</p><p>Based on these promising results, a new drilling site with a lower sedimentation rate was targeted, bringing forth the ~98 m long F4-F5 record. In addition to the already recognised tephra layers occurring in the section that overlaps with core F1-F3, ~110 additional tephra and cryptotephra horizons were identified in the composite sediment succession of the F4-F5 record, providing new insights into the Italian volcanic history for the poorly explored interval beyond 200 ka.</p><p>Here we present the first tephrostratigraphic and tephrochronological results for this interval, which is dominated by eruptions from the Sabatini, Vulsini, Vico, and Colli Albani volcanoes. Several important known eruptions were identified and dated for the first time in distal settings: e.g., Canino (256.8 ± 1.1 ka), Tufo Giallo di Sacrofano (288.0 ± 2.0 ka), Magliano Romano Plinian Fall (315.0 ± 2.0 ka), Orvieto-Bagnoregio Ignimbrite (335.8 ± 1.4 ka), Villa Senni (367.5 ± 1.6 ka), Pozzolane Nere and its precursor (408.5 ± 1.3 ka, and 407.1 ± 4.2 ka, respectively). Finally, a tephra located at the base of the succession was directly dated by <sup>40</sup>Ar/<sup>39</sup>Ar at 424.3 ± 3.2 ka, thus extending the record back to the MIS 12/11 transition (~430 ka).</p><p>Ongoing geochemical analysis, including trace elements, Sr and Nd isotopes, and <sup>40</sup>Ar/<sup>39</sup>Ar dating of both Fucino tephra layers and potential proximal counterparts will help to reveal their volcanic sources and enable further tephrostratigraphic correlations supported by independent age determinations. These results will contribute towards an improved MIS 11-MIS 7 Mediterranean tephrostratigraphy, which is still poorly characterized and exploited.</p><p>The recognition and dating of the numerous tephra layers from the F4-F5 record can be directly combined to construct a comprehensive age-depth series of biogeochemical proxies and geomagnetic excursions derived from the lacustrine sediments, forming the backbone for an independent, radioisotopically anchored chronology for the F4-F5 multi-proxy record. Through paleoclimatic alignments and geomagnetic excursion synchronizations, the independent Fucino chronology can be propagated to the North Atlantic records, and possibly on a global scale, setting the framework for a better understanding of the spatio-temporal variability, magnitude, and different expressions of Quaternary orbital and millennial-scale paleoclimatic changes.</p>

2015 ◽  
Vol 20 ◽  
pp. 13-19 ◽  
Author(s):  
B. Giaccio ◽  
E. Regattieri ◽  
G. Zanchetta ◽  
B. Wagner ◽  
P. Galli ◽  
...  

Abstract. An 82 m long sedimentary succession was retrieved from the Fucino Basin, the largest intermountain tectonic depression of the central Apennines. The basin hosts a succession of fine-grained lacustrine sediments (ca. 900 m-thick) possibly continuously spanning the last 2 Ma. A preliminary tephrostratigraphy study allows us to ascribe the drilled 82 m long record to the last 180 ka. Multi-proxy geochemical analyses (XRF scanning, total organic/inorganic carbon, nitrogen and sulfur, oxygen isotopes) reveal noticeable variations, which are interpreted as paleohydrological and paleoenvironmental expressions related to classical glacial–interglacial cycles from the marine isotope stage (MIS) 6 to present day. In light of the preliminary results, the Fucino sedimentary succession is likely to provide a long, continuous, sensitive, and independently dated paleoclimatic archive of the central Mediterranean area.


2020 ◽  
Author(s):  
Stefano Patruno ◽  
Vittorio Scisciani

<p>Post-orogenetic extensional/gravitational collapse events constitute a relatively poorly understood tectonic process, which is responsible for the quick and effective dismantling of the thickened crust and topographic bulge of fold-and-thrust belt edifices. These events are also responsible for the accumulation of very thick post-orogenetic successions and, in case of active extension, may trigger moderate to strong earthquakes resulting in obvious seismic hazards (e.g., the 1915 Mg 7.0 Fucino earthquake in Central Italy, which caused 30,000 victims)</p><p>Here, we combine seismic interpretation coupled with well analyses, basin modelling and a thorough literature review, in order to compare an ancient and a modern example of study areas subject to post-orogenetic collapse. The Devonian-age Old Red Sandstones of north-western Europe and ?Plio-Quaternary fill of the Fucino intramontane extensional basin in the central Apennines (Italy) share several stratigraphic, depositional and tectonic characteristics. Both are characterized by remarkably similar seismic-stratigraphic architecture (with syn-depositional half-grabens) and maximum thickness of >1,500 metres. In the Fucino, the border faults associated to the main tectonic depocentres achieved maximum throw rates of 1,000-1,400 mm/kyr.</p><p>Both units comprise thick continental siliciclastic successions, dominated by lacustrine and alluvial to fluvio-deltaic facies. The facies architecture reveals a progressive transition from localized, fault-bounded depocentres to transgressive lacustrine successions in wider basins that are less reliant on the sole fault-driven subsidence. The studied units were deposited due to high and quick tectonic subsidence which took place very shortly after the end (or during?) of crustal shortening processes (respectively Caledonian and Apenninic orogenesis) and in a post-orogenic collapse context.</p><p>In both study areas, the sedimentation of the thick continental units are intimately associated to a polyphase inversion tectonics, with pre-existing inherited deep-seated discontinuities affected, in places, first by a positive and subsequently by a negative reactivation during the extensional collapse. A further element common in the two study areas, is a strike-slip or oblique tectonics occurring during or immediately prior to the extensional collapse achieved by the normal faulting. This has been interpreted as a consequence of the gradual rotation of the stress vectors around their axes, culminating in the relaxation of the horizontal compressive stress and the onset of the post-orogenetic extensional/gravitational collapse process itself. For example, in the Fucino Basin, maximum Plio-Quaternary sediment thicknesses of >1700 m occur in two tectonic depocentres, situated respectively to the north and east of the basin. In contrast, the south-eastern striking dip-slip border faults bounding the eastern edge of the Fucino show maximum slip rates in the Lower-Middle Pleistocene, with evidence (e.g., Gioia dei Marsi) for a very recent activity, possibly linked with the 1915 seismic event.</p><p>The study of post-orogenic extensional collapse by comparison of ancient and recent basins suggest that in these settings poly-phase tectonic inversion commonly occurs and promote multiple reactivation of inherited zones of weakness. The comprehension of the common and dissimilar features, may be fundamental to better understand the mechanism and evolution of post-orogenic chain reworking and for natural resources and geological hazards assessment, including earthquakes. The coupled analysis of an ancient and recent example enables just that.</p>


2017 ◽  
Author(s):  
Alizée Roobaert ◽  
Goulven G. Laruelle ◽  
Peter Landschützer ◽  
Pierre Regnier

Abstract. Abstract. The calculation of the air-water CO2 exchange (FCO2) in the ocean not only depends on the gradient in CO2 partial pressure at the air-water interface but also on the parameterization of the gas exchange transfer velocity (k) and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k-formulations and 4 wind speed data products (CCMP, ERA, NCEP1 and NCEP2). The analysis is performed at a 1° x 1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015) for the 1991–2011 period while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP) project. First, we use k-formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k = c·U102, Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014) where c is a calibration coefficient and U10 is the wind speed measured 10 meters above the surface. Our results show that the range of global FCO2, calculated with these k-relationships, diverge by 12 % when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global/regional differences significantly increase when using NCEP2 or other k-formulations which include earlier relationships (i.e. Wanninkhof, 1992; Wanninkhof et al., 2009) as well as numerous local/regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product it is possible to recalculate the coefficient c globally (hereafter called c*) for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study but the resulting global FCO2 estimates still diverge by 10 %. These results also reveal that the Equatorial Pacific, the North Atlantic and the Southern Ocean are the regions in which the choice of wind product will most strongly affect the estimation of the FCO2, even when using c*.


2018 ◽  
Vol 15 (6) ◽  
pp. 1701-1720 ◽  
Author(s):  
Alizée Roobaert ◽  
Goulven G. Laruelle ◽  
Peter Landschützer ◽  
Pierre Regnier

Abstract. The calculation of the air–water CO2 exchange (FCO2) in the ocean not only depends on the gradient in CO2 partial pressure at the air–water interface but also on the parameterization of the gas exchange transfer velocity (k) and the choice of wind product. Here, we present regional and global-scale quantifications of the uncertainty in FCO2 induced by several widely used k formulations and four wind speed data products (CCMP, ERA, NCEP1 and NCEP2). The analysis is performed at a 1°  ×  1° resolution using the sea surface pCO2 climatology generated by Landschützer et al. (2015a) for the 1991–2011 period, while the regional assessment relies on the segmentation proposed by the Regional Carbon Cycle Assessment and Processes (RECCAP) project. First, we use k formulations derived from the global 14C inventory relying on a quadratic relationship between k and wind speed (k = c ⋅ U102; Sweeney et al., 2007; Takahashi et al., 2009; Wanninkhof, 2014), where c is a calibration coefficient and U10 is the wind speed measured 10 m above the surface. Our results show that the range of global FCO2, calculated with these k relationships, diverge by 12 % when using CCMP, ERA or NCEP1. Due to differences in the regional wind patterns, regional discrepancies in FCO2 are more pronounced than global. These global and regional differences significantly increase when using NCEP2 or other k formulations which include earlier relationships (i.e., Wanninkhof, 1992; Wanninkhof et al., 2009) as well as numerous local and regional parameterizations derived experimentally. To minimize uncertainties associated with the choice of wind product, it is possible to recalculate the coefficient c globally (hereafter called c∗) for a given wind product and its spatio-temporal resolution, in order to match the last evaluation of the global k value. We thus performed these recalculations for each wind product at the resolution and time period of our study but the resulting global FCO2 estimates still diverge by 10 %. These results also reveal that the Equatorial Pacific, the North Atlantic and the Southern Ocean are the regions in which the choice of wind product will most strongly affect the estimation of the FCO2, even when using c∗.


2013 ◽  
Vol 14 (3) ◽  
pp. 42 ◽  
Author(s):  
P. MAIORANO ◽  
F. CAPEZZUTO ◽  
G. D'ONGHIA ◽  
A. TURSI

The spatio-temporal pattern of Munida rutllanti distribution in the north-western Ionian Sea has been studied. Data were collected during 14 experimental trawl surveys conducted from 1997 to 2010 as part of the international MEDITS project. The hauls were carried out during day-light hours between depths of 10 and 800 m in the spring season. A progressive increase in the abundance index (N/km2) of M. rutllanti was observed from 2000 to 2008, then a sharp decrease was shown in the last two years. The greatest and lowest abundance indices were observed in the Apulian and central Calabrian sub-areas, respectively. The species was collected between 107 and 795 m in depth, with a significant increase and decrease over time in the maximum and minimum depth of finding, respectively. A highly significant increase over time in the mean carapace length was also observed in the whole study area. The widespread occurrence and increasing abundance of this species in the Ionian Sea could be related to the increase in temperature and the variation in hydrographic conditions which occurred in the Ionian basin during the EMT-BiOS phenomenon.


1995 ◽  
Vol 38 (3-4) ◽  
Author(s):  
L. Alfonsi ◽  
L. Sagnotti ◽  
F. Galadini

The paleomagnetism of the Plio-Pleistocene continental sediments cropping out at the north-eastern edge of the Fucino extensionaI basin (Italy, Central Apennines) was investigated. The area is characterized by strong neo-tectonic activity and the original purpose was to investigate possibIe verticaI axis rotations in Plio-Pleisto- cene sediments, in order to improve the understanding of the recent geodynamic processes. Scarcity of suit- able outcrops limited sampling at 8 sites (83 specimens) from the north-eastern edge of the basin, in clay-rich intervals beIonging to two different sedimentary cycIes. The paleomagnetic resuIts pointed out a peculiar mag- netic behaviour common to the whole set of studied samples. The Natural Remanent Magnetization (NRM) is dominated by a vigcous normal component acquired under the influence of the present geomagnetic field, stable only below 200°C. Another (reverse) very weak component, stable at higher temperatures (up to 400°C), is present in most of the samples. This component can be precisely isolated for only 7 specimens from 3 different sites and therefore the information gained is not statistically sufficient for any tectonic reconstruction. Rock magnetism analyses showed a variable magnetic mineralogy j but the NRM carriers are not well represented in the artificial remanences produced in the laboratory. Results suggest that the natural viscous remanence is most likeIy carried by coarse multi-domain magnetite.


2013 ◽  
Vol 9 (4) ◽  
pp. 4599-4653 ◽  
Author(s):  
A. A. Andreev ◽  
P. E. Tarasov ◽  
V. Wennrich ◽  
E. Raschke ◽  
U. Herzschuh ◽  
...  

Abstract. The 318 m thick lacustrine sediment record in Lake El'gygytgyn, northeastern Russian Arctic cored by the international El'gygytgyn Drilling Project provides unique opportunities allowing the time-continuous reconstruction of the regional paleoenvironmental history for the past 3.6 Myr. Pollen studies of the lower 216 m of the lacustrine sediments show their value as an excellent archive of vegetation and climate changes during the Late Pliocene and Early Pleistocene. About 3.50–3.35 Myr BP the vegetation at Lake El'gygytgyn, in nowadays tundra area, was dominated by spruce-larch-fir-hemlock forests. After ca. 3.4 Myr BP dark coniferous taxa gradually disappeared. A very pronounced environmental changes took place at ca. 3.305–3.275 Myr BP, corresponding with the Marine Isotope Stage (MIS) M2, when treeless tundra- and steppe-like habitats became dominant in the regional vegetation. Climate conditions were similar to those of Late Pleistocene cold intervals. Numerous coprophilous fungi spores identified in the pollen samples suggest the presence of grazing animals around the lake. Following the MIS M2 event, larch-pine forests with some spruce mostly dominated in the area until ca. 2.6 Myr BP, interrupted by colder and drier intervals ca. 3.04–3.02, 2.93–2.91, and 2.725–2.695 Myr BP. At the beginning of the Pleistocene, ca. 2.6 Myr BP, noticeable climatic deterioration occurred. Forested habitats changed to predominantly treeless and shrubby environments, which reflect a relatively cold and dry climate. Revealed peaks in green algae colonies (Botryococcus) around 2.53, 2.45, 2.320–2.305 and 2.175–2.150 Myr BP suggest a spread of shallow water environments. Few intervals (i.e. 2.55–2.53, ca. 2.37, and 2.35–2.32 Myr BP) with a higher presence of coniferous taxa (mostly pine and larch) document some relatively short-term climate ameliorations.


2013 ◽  
Vol 9 (5) ◽  
pp. 5899-5940 ◽  
Author(s):  
V. Wennrich ◽  
P. S. Minyuk ◽  
V. Ya. Borkhodoev ◽  
A. Francke ◽  
B. Ritter ◽  
...  

Abstract. The 3.6 Ma sediment record of Lake El'gygytgyn, Far East Russian Arctic, represents the longest continuous climate archive of the terrestrial Arctic. Its elemental composition monitored by X-ray fluorescence scanning exhibits significant changes since the Mid-Pliocene caused by climate driven variations in the primary production, postsedimentary diagenetic processes, and current activity in the lake as well as weathering processes in its catchment. During the Mid to Late Pliocene, warmer and wetter climatic conditions are reflected by elevated Si / Ti ratios, indicating enhanced diatom production in the lake. Prior to 3.3 Ma, this signal is highly masked by intensified detrital input from the catchment, visible in maxima of clastic-related proxies such as the K concentration. In addition, calcite formation in the early lake history points to enhanced nutrient flux into the lake caused by intensified weathering in its catchment. Its termination at ca. 3.3 Ma is supposed to be linked to the development of permafrost in the region triggered by a first cooling in the Mid-Pliocene. After ca. 3.0 Ma the elemental data suggest a gradual transition to Quaternary-style glacial / interglacial cyclicity. In the early Pleistocene, the cyclicity was first dominated by variations on the 41 ka obliquity band but experienced a change to a 100 ka eccentricity dominance after the Middle Pleistocene Transition at ca. 1.2 to 0.7 Ma. This clearly demonstrates the sensitivity of the Lake El'gygytgyn record to orbital forcing. A successive decrease of the baseline-levels of the redox-sensitive Mn / Fe ratio and magnetic susceptibility between 2.3 to 1.8 Ma reflects an overall change in the bottom water oxygenation due to an intensified occurrence of pervasive glacial episodes in the early Quaternary. The coincidence with major changes in the North Pacific and Bering Sea paleoceanography at ca. 1.8 Ma implies that the change in lake hydrology was caused by regional cooling and/or changes in the ocean-land moisture transport. Further rising TOC and TN values after ca. 1.6 Ma are attributed to a progressive intensification of the glacial intensity. In the course of the Quaternary glacial/interglacial sequence eight so-called "super-interglacials" occur. Their exceptional warm conditions are reflected by extreme Si / Ti peaks accompanied by lows in Ti, K, and Fe, thus indicating an extraordinary high lake productivity.


2014 ◽  
Vol 82 (2) ◽  
pp. 450-461 ◽  
Author(s):  
Eleonora Regattieri ◽  
Giovanni Zanchetta ◽  
Russell N. Drysdale ◽  
Ilaria Isola ◽  
John C. Hellstrom ◽  
...  

AbstractRelatively few radiometrically dated records are available for the central Mediterranean spanning the marine oxygen isotope stage 6–5 (MIS 6–5) transition and the first part of the Last Interglacial. Two flowstone cores from Tana che Urla Cave (TCU, central Italy), constrained by 19 U/Th ages, preserve an interval of continuous speleothem deposition between ca. 159 and 121 ka. A multiproxy record (δ18O, δ13C, growth rate and petrographic changes) obtained from this flowstone preserves significant regional-scale hydrological changes through the glacial/interglacial transition and multi-centennial variability (interpreted as alternations between wetter and drier periods) within both glacial and interglacial stages. The glacial stage shows a wetter period between ca. 154 and 152 ka, while the early to middle Last Interglacial period shows several drying events at ca. 129, 126 and 122 ka, which can be placed in the wider context of climatic instability emerging from North Atlantic marine and NW European terrestrial records. The TCU record also provides important insights into the evolution of local environmental conditions (i.e. soil development) in response to regional and global-scale climate events.


Sign in / Sign up

Export Citation Format

Share Document