Precipitation and temperature projections for the Indus River basin of Pakistan during 21st century using statistical downscaling

Author(s):  
Muhammad Saleem Pomee ◽  
Elke Hertig ◽  
Bashir Ahmad

<p>The Indus River system originates within high mountain ranges of Hindukush, Karakoram and Himalayans (HKH) and contains the largest cryosphere outside the Polar Regions. It assures livelihood of millions of people, before descending into the Arabian Sea. Different processes, which involve complex interplays of contrasting synoptic-scale circulations and regional topography, largely govern precipitation, which varies significantly with space-time and altitudes in upper Indus basin (UIB). In contrast, the Lower Indus (LI) has arid to semi-arid climate and depends heavily on melt-dominated water supply from the UIB. Considering climate hotspot nature of this basin, a pragmatic assessment of future precipitation and temperature changes at basin-scale are fundamental to provide effective policy advice.</p><p>However, long-term, reliable and consistent data to effectively simulate orographic climatology within UIB that largely governs the basin hydrology is scarce. Consequently, even the mean direction of regional climate is highly controversial and ranging from rapidly retreating glaciers to the so-called “Karakoram anomaly”. While the provision of additional useful data is still an ongoing process, improvements in simulation methodologies using the available observational network, can still offer some opportunities to reduce uncertainties. One way is to make use of large-scale atmospheric circulations, which are modeled more reliably than precipitation itself. Moreover, the circulation-precipitation relationships can additionally explain governing mechanisms to improve confidence in resulting simulations.</p><p>In our study, we modeled observed precipitation and temperature (Tmax and Tmin) dynamics of the entire basin. A seasonally and spatially differentiated analysis was done using improved UIB monitoring, which provide enhanced spatio-altitudinal information. By taking advantage of the recent high-altitudes (HA) installations within UIB, we argue that precipitation at relatively low-altitudes only quantitatively differ from HA rates, but share a significant joint variability at sub-regional scales. Therefore, the low-altitude stations (historic) can provide reasonable inferences about more uncertain orographic structure of UIB. We adapted generalized linear models (GLMs) with Tweedie and Gamma distributions to model precipitation and multiple linear regressions (MLRs) for temperature simulations using time-series of carefully selected regionally representatives, as predictand and principal component scores of different larger-scale dynamical and thermodynamic variables from ERA-Interim reanalysis, as predictors. The final regression models, which were identified through a cross validation framework, showed significant statistical skills and physical consistency to simulate observed seasonal precipitation and temperature variability over larger spatio-altitudinal scales.    </p><p>We further used the predictors to identify better performing regional and seasonal CIMP5- GCMs by comparing predictors through Taylor diagrams in the historical period. ERA-Interim predictors served as a basis for evaluation. Reanalysis uncertainties were assessed by using also NCEP-NCAR-II and ERA5 reanalysis. We considered two radiative forcings (RCP4.5 and RCP8.5) to analyze median change signals of precipitation (temperature) during mid (2041-2070) and end of 21<sup>st</sup> century (2071-2100). The signal to noise ratio was computed to evaluate future changes compared to observed natural variability. </p><p> </p>

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 195
Author(s):  
Muhammad Saleem Pomee ◽  
Elke Hertig

We assessed maximum (Tmax) and minimum (Tmin) temperatures over Pakistan’s Indus basin during the 21st century using statistical downscaling. A particular focus was given to spatiotemporal heterogeneity, reference and General Circulation Model (GCM) uncertainties, and statistical skills of regression models using an observational profile that could significantly be improved by recent high-altitude observatories. First, we characterized the basin into homogeneous climate regions using K-means clustering. Predictors from ERA-Interim reanalysis were then used to model observed temperatures skillfully and quantify reference and GCM uncertainties. Thermodynamical (dynamical) variables mainly governed reference (GCM) uncertainties. The GCM predictors under RCP4.5 and RCP8.5 scenarios were used as “new” predictors in statistical models to project ensemble temperature changes. Our analysis projected non-uniform warming but could not validate elevation-dependent warming (EDW) at the basin scale. We obtained more significant warming during the westerly-dominated seasons, with maximum heating during the winter season through Tmin changes. The most striking feature is a low-warming monsoon (with the possibility of no change to slight cooling) over the Upper Indus Basin (UIB). Therefore, the likelihood of continuing the anomalous UIB behavior during the primary melt season may not entirely be ruled out at the end of the 21st century under RCP8.5.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 682 ◽  
Author(s):  
Michael Warscher ◽  
Sven Wagner ◽  
Thomas Marke ◽  
Patrick Laux ◽  
Gerhard Smiatek ◽  
...  

Mountain regions with complex orography are a particular challenge for regional climate simulations. High spatial resolution is required to account for the high spatial variability in meteorological conditions. This study presents a very high-resolution regional climate simulation (5 km) using the Weather Research and Forecasting Model (WRF) for the central part of Europe including the Alps. Global boundaries are dynamically downscaled for the historical period 1980–2009 (ERA-Interim and MPI-ESM), and for the near future period 2020–2049 (MPI-ESM, scenario RCP4.5). Model results are compared to gridded observation datasets and to data from a dense meteorological station network in the Berchtesgaden Alps (Germany). Averaged for the Alps, the mean bias in temperature is about −0.3 °C, whereas precipitation is overestimated by +14% to +19%. R 2 values for hourly, daily and monthly temperature range between 0.71 and 0.99. Temporal precipitation dynamics are well reproduced at daily and monthly scales (R 2 between 0.36 and 0.85), but are not well captured at hourly scale. The spatial patterns, seasonal distributions, and elevation-dependencies of the climate change signals are investigated. Mean warming in Central Europe exhibits a temperature increase between 0.44 °C and 1.59 °C and is strongest in winter and spring. An elevation-dependent warming is found for different specific regions and seasons, but is absent in others. Annual precipitation changes between −4% and +25% in Central Europe. The change signals for humidity, wind speed, and incoming short-wave radiation are small, but they show distinct spatial and elevation-dependent patterns. On large-scale spatial and temporal averages, the presented 5 km RCM setup has in general similar biases as EURO-CORDEX simulations, but it shows very good model performance at the regional and local scale for daily meteorology, and, apart from wind-speed and precipitation, even for hourly values.


2019 ◽  
Vol 32 (9) ◽  
pp. 2483-2495 ◽  
Author(s):  
Kwesi A. Quagraine ◽  
Bruce Hewitson ◽  
Christopher Jack ◽  
Izidine Pinto ◽  
Christopher Lennard

Abstract The study develops an approach to assess co-behavior of climate processes. The regional response of precipitation and temperature patterns over southern Africa to the combined roles (co-behavior) of El Niño–Southern Oscillation (ENSO), Antarctic Oscillation (AAO), and intertropical convergence zone (ITCZ) is evaluated. Self-organizing maps (SOMs) classify circulation patterns over the subcontinent, and principal component analysis (PCA) is used to identify related patterns across the data. The tropical rain belt index (TRBI), a measure of the ITCZ, is generally in phase with the AAO but mostly out of phase with ENSO. The phases of AAO may enhance or suppress ENSO impact on the location and distribution of regional precipitation and temperature over the region. This understanding of the co-behavior of large-scale processes is important to assess the impact these processes collectively have on precipitation and temperature, especially under future climate forcings.


2021 ◽  
Author(s):  
Akif Rahim ◽  
Nadeem Tariq ◽  
Farhan Aziz ◽  
Muhammad Yousaf ◽  
Tahira Khurshid

<p>The sustainability index identifies a strategy that defend or improve the desired water management features of the basin in the future. The Upper Indus river basin is a high mountain region and consider third freshwater tower. The flow of the river consists of melting glaciers, snow, rainfall. Beyond the polar regions, the Upper Indus Basin has the largest area of glaciers in the world (22,000 km<sup>2</sup>).  About 220 million people depend on Indus Basin water for agriculture and drinking purpose. Under the changing climate, sustainability is becoming a challenge for the freshwater resources. The integration of climate variables with RRV indicators is a new approach to meet this challenge. In this study the sustainability of the upper Indus is quantified. The probabilistic concept of resilience, reliability and vulnerability is applied to rainfall variability and drought patterns. The monthly Standardized Precipitation-Evapotranspiration Index (SPEI) grided data (0.5<sup>o</sup> 0.5<sup>o</sup>) generated by climate research unit (CRU)version 4 has been used for study during the period 1901–2018. Based on the SPEI pattern, the SPEI of -0.5 was selected as the threshold (demand) to evaluate the sustainability. The results indicate the frequency of drought events in the western part of the basin is much higher than the eastern part. However, the frequency of drought events in the basin is high but the capability of the basin to resilient the droughts varies from 0.57 to 0.83. The value of reliability indicator varies from 0.8 to 0.86 and vulnerability of drought in the basin is in the range of 0.2 to 0.45. The average water sustainability index of the basin is 0.4 which lies in the category of a satisfactory<strong> </strong>state.The results of the conceptual framework of RRV can provide a more comprehensive basis for designing watershed health variables and drought management plans.</p><p> </p><p><strong>Keywords: Upper Indus Basin, Water sustainability, RRV concept, SPEI, Drought.</strong></p>


2020 ◽  
Author(s):  
Felicitas Hansen ◽  
Danijel Belusic ◽  
Klaus Wyser

<p>The large-scale atmospheric circulation is one of the most important factors influencing weather and climate conditions on different timescales. Its short- and long-term changes considerably determine both mean and extreme values of surface parameters like temperature or precipitation rates. Future changes of circulation patterns are of particular interest as these may significantly alter or amplify the expected thermodynamic changes due to changing concentrations of greenhouse gases, albedo and land use. We analyse both historical as well as future climate simulations of the SMHI large ensemble (S-LENS) performed with the EC-Earth3 global climate model to examine large-scale circulation situations and their association to extremes in precipitation and temperature over Sweden. Various methods exist to classify mostly sea level pressure or geopotential height fields into characteristic circulation types, and we compare several of these methods for their applicability to represent precipitation and temperature variability over our region of interest. S-LENS consists of a 50-member ensemble for a historical period (1970-2014) and four 50-member climate change scenario ensembles covering the 21st century differing in terms of assumptions made for future radiative forcing development. We study the efficiency of circulation types in the historical period to give rise to extremes, and examine further the frequency and within-type changes of those circulation types associated with extremes by the middle and the end of the 21st century under the different climate change scenarios. S-LENS with its comparatively large number of both multi-decadal scenarios and realizations for each scenario serves as a perfect testbed to study potential changes in events of low frequency within the environment of a single model.</p>


2019 ◽  
Author(s):  
Zhiguang Tang ◽  
Xiaoru Wang ◽  
Jian Wang ◽  
Xin Wang ◽  
Junfeng Wei

Abstract. The snowline altitude at the end of melting season (SLA-EMS) can be used as an indicator of the equilibrium line altitude (ELA) and therefore for the annual mass balance of glaciers in certain conditions. High Mountain Asia (HMA) hosts the largest glacier and perennial snow cover concentration outside the polar regions, but the spatiotemporal pattern of SLA-EMS under climate change is poorly understood in there. Here, we develop a method for estimating SLA-EMS over large-scale area by using the cloud-removed MODIS fractional snow cover data, and investigate the spatiotemporal characteristics and trends of SLA-EMS during 2001–2016 over the HMA. The possible linkage between the SLA-EMS and temperature and precipitation changes over the HMA is also investigated. The results are as follows: (1) There are good linear regression relationships (R = −0.66) between the extracted grid (30 km) SLA-EMS and glaciers annual mass balance over the HMA. (2) Generally, the SLA-EMS in the HMA decreases with increase of latitude. And due to the mass elevation effect, it decreases from the high altitude region of Himalayas and inner Tibet to surrounding low mountainous area. (3) The SLA-EMS of HMA generally shows a rising trend in the recent years (2001–2016). In total, 75.3 % (24.2 % with a significant increase) and 16.1 % (less than 1 % with a significant decrease) of the study area show increasing and decreasing trends in SLA-EMS, respectively. The SLA-EMS significant increases in Tien Shan, Inner Tibet, south and east Tibet, east Himalaya and Hengduan Shan. (4) Temperature (especially the summer temperature) trends to be the dominant climatic factor affecting the variations of SLA-EMS over the HMA. Under the background of the generally losing glaciers mass in HMA, if the SLA-EMS continues to rise as a result of global warming, it will accelerate the negative mass balances of the glaciers. This study is an important step towards reconstruction the time series of glacier annual mass balance using SLA-EMS datasets at the scale of HMA to better document the relationships between climate and glaciers.


2013 ◽  
Vol 10 (11) ◽  
pp. 13145-13190 ◽  
Author(s):  
S. Hasson ◽  
V. Lucarini ◽  
M. R. Khan ◽  
M. Petitta ◽  
T. Bolch ◽  
...  

Abstract. In this paper we assess the snow cover and its dynamics for the western river basins of the Indus River System (IRS) and their sub-basins located in Afghanistan, China, India and Pakistan for the period 2001–2012. Moderate Resolution Imaging Spectro-radiometer (MODIS) daily snow products from Terra (MOD) and Aqua (MYD) have been first improved and then analysed on seasonal and annual basis against different topographic parameters (aspect, elevation and slope). Our applied cloud filtering technique has reduced the cloud cover from 37% (MOD) and 43% (MYD) to 7%, thus improving snow cover estimates from 7% (MOD) and 5% (MYD) to 14% for the area of interest (AOI) during the validation period (2004). Our results show a decreasing tendency for the annual average snow cover for the westerlies-influenced basins (Upper Indus Basin, Astore, Hunza, Shigar, Shyok) and an increasing tendency for the monsoon-influenced basins (Jhelum, Kabul, Swat and Gilgit). Regarding the seasonal snow cover, decrease during winter and autumn and increase during spring and summer has been found, which is consistent with the observed cooling and warming trends during the respective seasons. Sub-basins at relatively higher latitude/altitude show higher variability than basins at lower latitude/mid-altitude. Northeastern and northwestern aspects feature larger snow cover. The mean regional snow line altitude (SLA) zones range between 3000 and 5000 m a.s.l. for all basins. Our analysis provides an indication of a decrease in the regional SLA zone, thus indicating a change in the water resources of the studied basins, particularly for the Upper Indus Basin (UIB). Such results are consistent with the observed hydro-climate data, recently collected local perceptions and glacier mass balances for the investigated period. Moreover, our analysis suggests some potential for the seasonal stream flow forecast as a significant negative correlation has been detected for the inter-annual variability of winter snow cover and value of the North Atlantic Oscillation (NAO) index of the previous autumn.


2016 ◽  
Vol 17 (4) ◽  
pp. 1147-1167 ◽  
Author(s):  
Francesca Viterbo ◽  
Jost von Hardenberg ◽  
Antonello Provenzale ◽  
Luca Molini ◽  
Antonio Parodi ◽  
...  

Abstract Estimating the risk of flood-generating precipitation events in high-mountain regions with complex orography is a difficult but crucial task. Quantitative precipitation forecasts (QPFs) at fine resolution are an essential ingredient to address this issue. Along these lines, the ability of the Weather Research and Forecasting (WRF) Model, operated at 3.5-km grid spacing, to reproduce the extreme meteorological event that led to the 2010 Pakistan flood and produced heavy monsoonal rain in the Indus basin is explored. The model results are compared with Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, the available ground measurements, and radar observations from the CloudSat mission. In particular, the sensitivity of the WRF simulations to the use of different convective closures (explicit and Kain–Fritsch) and microphysical parameterizations (WRF single-moment 6-class microphysics scheme and Thompson) is analyzed. The impact of using different initial conditions, associated with a different initialization day, is also examined. The use of the new-generation Distributed Simulation and Stimulation System NASA Earth Observing System Simulators Suite radar simulator allows a more accurate and extensive representation of the mesoscale processes and of the interaction with the complex orography. The results reported here indicate that the quality of the large-scale initial conditions is a prominent factor affecting the possibility of retrieving a realistic representation of this event when using a nonhydrostatic regional model.


2017 ◽  
Vol 18 (11) ◽  
pp. 2959-2972 ◽  
Author(s):  
Amirhossein Mazrooei ◽  
A. Sankarasubramanian

Abstract Statistical information from ensembles of climate forecasts can be utilized in improving the streamflow predictions by using different downscaling methods. This study investigates the use of multinomial logistic regression (MLR) in downscaling large-scale ensemble climate forecasts into basin-scale probabilistic streamflow forecasts of categorical events over major river basins across the U.S. Sun Belt. The performance of MLR is then compared with the categorical forecasts estimated from the traditional approach, principal component regression (PCR). Results from both cross validation and split sampling reveal that in general, the probabilistic categorical forecasts from the MLR model have more accuracy and exhibit higher rank probability skill score (RPSS) compared to the PCR probabilistic forecasts. MLR forecasts are also more skillful than PCR forecasts during the winter season as well as for basins that exhibit high interannual variability in streamflows. The role of ensemble size of precipitation forecasts in developing MLR-based streamflow forecasts was also investigated. Because of its simplicity, MLR offers an alternate, reliable approach to developing categorical streamflow forecasts.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 895
Author(s):  
Geoffrey M. Podger ◽  
Mobin-ud-Din Ahmad ◽  
Yingying Yu ◽  
Joel P. Stewart ◽  
Syed Muhammad Mehar Ali Shah ◽  
...  

Pakistan’s society and economy are highly dependent on the surface and groundwater resources of the Indus River basin. This paper describes the development and implementation of a daily Indus River System Model (IRSM) for the Pakistan Indus Basin Irrigation System (IBIS) to examine the potential impact of reservoir sedimentation on provincial water security. The model considers both the physical and management characteristics of the system. The model’s performance in replicating provincial allocation ratios is within 0.1% on average and the modeling of water flow at barrages and delivered to irrigation canal commands is in agreement with recorded data (major barrage NSE 0.7). The average maximum volumetric error for the Tarbela and Mangla reservoirs are respectively 5.2% and 8.8% of mean annual inflow. The model showed that a 2.3 km3 reduction in storage volume since 1990 equates to approximately 1.3 km3 i.e., a 4–5% reduction in irrigation deliveries, respectively, for Punjab and Sindh in the dry (Rabi) season. This decline indicates that without further augmentation of system storage, the Rabi season supplies will continue to be further impacted in the future. This paper demonstrates the suitability of IRSM for exploring long term planning and operational rules and the associated impacts on water, food and energy security in Pakistan.


Sign in / Sign up

Export Citation Format

Share Document