Sudden Stratospheric Warmings - The Role of Radiation Revealed Through an Energy Budget Analysis

Author(s):  
Kevin Bloxam

<p>Sudden stratospheric warmings (SSWs) are impressive events that occur in the winter hemisphere's polar stratosphere and are capable of producing temperature anomalies upwards of +50 degrees within a matter of days. While much work has been dedicated towards determining how SSWs occur and their ability to interact with the underlying troposphere, one under-explored aspect of SSWs is the role of radiation. Using a radiative transfer model and an energy budget analysis for distinct layers of the stratosphere, this work accounts for the radiative contribution to the removal of the anomalous energy associated with SSWs. In total, 19 events are investigated over the 1979-2016 period. This work reveals that in the absence of dynamical heating following major SSWs, longwave radiative cooling dominates and often results in a strong negative temperature anomaly. The stratospheric temperature change driven by the radiative cooling is characterized by an exponential decay of the temperature anomaly with an increasing e-folding time of 6.3 ± 2.6 to 21.6 ± 8.3 days from the upper to lower stratosphere. This work also demonstrates a negligible impact that water vapour and ozone have on the longwave and shortwave radiative heating rates during SSWs when the concentrations of these gases are perturbed from their climatological state.</p>

2021 ◽  
Vol 78 (1) ◽  
pp. 269-286
Author(s):  
Kevin Bloxam ◽  
Yi Huang

AbstractSudden stratospheric warmings (SSWs) are impressive events that occur in the winter hemisphere’s polar stratosphere and are capable of producing temperature anomalies upward of +50 K within a matter of days. While much work has been dedicated toward determining how SSWs occur and their ability to interact with the underlying troposphere, one underexplored aspect is the role of radiation, especially during the recovery phase of SSWs. Using a radiative transfer model and a heating rate analysis for distinct layers of the stratosphere averaged over the 60°–90°N polar region, this paper accounts for the radiative contribution to the removal of the anomalous temperatures associated with SSWs. In total 17 events are investigated over the 1979–2016 period. This paper reveals that in the absence of dynamical heating following major SSWs, longwave radiative cooling dominates and often results in a strong negative temperature anomaly. The polar winter stratospheric temperature change driven by the radiative cooling is characterized by an exponential decay of temperature with an increasing e-folding time of 5.7 ± 2.0 to 14.6 ± 4.4 days from the upper to middle stratosphere. The variability of the radiative relaxation rates among the SSWs was determined to be most impacted by the initial temperature of the stratosphere and the combined dynamic and solar heating rates following the onset of the events. We also found that trace-gas anomalies have little impact on the radiative heating rates and the temperature evolution during the SSWs in the mid- to upper stratosphere.


2009 ◽  
Vol 9 (12) ◽  
pp. 4011-4021 ◽  
Author(s):  
J. Huang ◽  
Q. Fu ◽  
J. Su ◽  
Q. Tang ◽  
P. Minnis ◽  
...  

Abstract. The dust aerosol radiative forcing and heating rate over the Taklimakan Desert in Northwestern China in July 2006 are estimated using the Fu-Liou radiative transfer model along with satellite observations. The vertical distributions of the dust aerosol extinction coefficient are derived from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar measurements. The CERES (Cloud and the Earth's Energy Budget Scanner) measurements of reflected solar radiation are used to constrain the dust aerosol type in the radiative transfer model, which determines the dust aerosol single-scattering albedo and asymmetry factor as well as the aerosol optical properties' spectral dependencies. We find that the dust aerosols have a significant impact on the radiative energy budget over the Taklimakan desert. In the atmospheres containing light, moderate and heavy dust layers, the dust aerosols heat the atmosphere (daily mean) by up to 1, 2, and 3 K day−1, respectively. The maximum daily mean radiative heating rate reaches 5.5 K day−1 at 5 km on 29 July. The averaged daily mean net radiative effect of the dust are 44.4, −41.9, and 86.3 W m−2, respectively, at the top of the atmosphere (TOA), surface, and in the atmosphere. Among these effects about two thirds of the warming effect at the TOA is related to the longwave radiation, while about 90% of the atmospheric warming is contributed by the solar radiation. At the surface, about one third of the dust solar radiative cooling effect is compensated by its longwave warming effect. The large modifications of radiative energy budget by the dust aerosols over Taklimakan Desert should have important implications for the atmospheric circulation and regional climate, topics for future investigations.


2009 ◽  
Vol 9 (2) ◽  
pp. 5967-6001 ◽  
Author(s):  
J. Huang ◽  
Q. Fu ◽  
J. Su ◽  
Q. Tang ◽  
P. Minnis ◽  
...  

Abstract. The dust aerosol radiative forcing and heating rate over the Taklimakan Desert in northwestern China in July 2006 are estimated using the Fu-Liou radiative transfer model along with satellite observations. The vertical distributions of the dust aerosol extinction coefficient are derived from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar measurements. The CERES (Cloud and the Earth's Energy Budget Scanner) measurements of reflected solar radiation are used to constrain the dust aerosol type in the radiative transfer model, which determines the dust aerosol single-scattering albedo and asymmetry factor as well as the aerosol optical properties spectral dependencies. We find that the dust aerosol radiative heating and effect have a significant impact on the energy budget over the Taklimakan desert. In the atmospheres containing light, moderate and heavy dust layers, the dust aerosols heat the atmosphere by up to 1, 2, and 3 K day−1, respectively. The maximum daily mean radiative heating rate reaches 5.5 K day−1 at 5 km on 29 July. The averaged daily mean net radiative effect of the dust are 44.4, −41.9, and 86.3 W m−2, respectively, at the top of the atmosphere (TOA), surface, and in the atmosphere. Among these effects about two thirds of the warming effect at the TOA is related to the longwave radiation, while about 90% of the atmospheric warming is contributed by the solar radiation. At the surface, about one third of the dust solar radiative cooling effect is compensated by its longwave warming effect. The large modifications of radiative energy budget by the dust aerosols over Taklimakan Desert should have important implications for the atmospheric circulation and regional climate, topics for future investigations.


2020 ◽  
Vol 59 (11) ◽  
pp. 1933-1947
Author(s):  
Sarah M. Borg ◽  
Steven M. Cavallo ◽  
David D. Turner

AbstractTropopause polar vortices (TPVs) are long-lived, coherent vortices that are based on the dynamic tropopause and characterized by potential vorticity anomalies. TPVs exist primarily in the Arctic, with potential impacts ranging from surface cyclone generation and Rossby wave interactions to dynamic changes in sea ice. Previous analyses have focused on model output indicating the importance of clear-sky and cloud-top radiative cooling in the maintenance and evolution of TPVs, but no studies have focused on local observations to confirm or deny these results. This study uses cloud and atmospheric state observations from Summit Station, Greenland, combined with single-column experiments using the Rapid Radiative Transfer Model to investigate the effects of clear-sky, ice-only, and all-sky radiative cooling on TPV intensification. The ground-based observing system combined with temperature and humidity profiles from the European Centre for Medium-Range Weather Forecasts’s fifth major global reanalysis dataset, which assimilates the twice-daily soundings launched at Summit, provides novel details of local characteristics of TPVs. Longwave radiative contributions to TPV diabatic intensity changes are analyzed with these resources, starting with a case study focusing on observed cloud properties and associated radiative effects, followed by a composite study used to evaluate observed results alongside previously simulated results. Stronger versus weaker vertical gradients in anomalous clear-sky radiative heating rates, contributing to Ertel potential vorticity changes, are associated with strengthening versus weakening TPVs. Results show that clouds are sometimes influential in the intensification of a TPV, and composite results share many similarities to modeling studies in terms of atmospheric state and radiative structure.


Author(s):  
Ryan Lagerquist ◽  
David Turner ◽  
Imme Ebert-Uphoff ◽  
Jebb Stewart ◽  
Venita Hagerty

AbstractThis paper describes the development of U-net++ models, a type of neural network that performs deep learning, to emulate the shortwave Rapid Radiative-transfer Model (RRTM). The goal is to emulate the RRTM accurately in a small fraction of the computing time, creating a U-net++ that could be used as a parameterization in numerical weather prediction (NWP). Target variables are surface downwelling flux, top-of-atmosphere upwelling flux (), net flux, and a profile of radiative-heating rates. We have devised several ways to make the U-net++ models knowledge-guided, recently identified as a key priority in machine learning (ML) applications to the geosciences. We conduct two experiments to find the best U-net++ configurations. In Experiment 1, we train on non-tropical sites and test on tropical sites, to assess extreme spatial generalization. In Experiment 2, we train on sites from all regions and test on different sites from all regions, with the goal of creating the best possible model for use in NWP. The selected model from Experiment 1 shows impressive skill on the tropical testing sites, except four notable deficiencies: large bias and error for heating rate in the upper stratosphere, unreliable for profiles with single-layer liquid cloud, large heating-rate bias in the mid-troposphere for profiles with multi-layer liquid cloud, and negative bias at lowzenith angles for all flux components and tropospheric heating rates. The selected model from Experiment 2 corrects all but the first deficiency, and both models run ~104 times faster than the RRTM. Our code is available publicly.


2011 ◽  
Vol 50 (12) ◽  
pp. 2473-2489 ◽  
Author(s):  
Sebastian W. Hoch ◽  
C. David Whiteman ◽  
Bernhard Mayer

AbstractThe Monte Carlo code for the physically correct tracing of photons in cloudy atmospheres (MYSTIC) three-dimensional radiative transfer model was used in a parametric study to determine the strength of longwave radiative heating and cooling in atmospheres enclosed in idealized valleys and basins. The parameters investigated included valley or basin shape, width, and near-surface temperature contrasts. These parameters were varied for three different representative atmospheric temperature profiles for different times of day. As a result of counterradiation from surrounding terrain, nighttime longwave radiative cooling in topographic depressions was generally weaker than over flat terrain. In the center of basins or valleys with widths exceeding 2 km, cooling rates quickly approached those over flat terrain, whereas the cooling averaged over the entire depression volume was still greatly reduced. Valley or basin shape had less influence on cooling rates than did valley width. Strong temperature gradients near the surface associated with nighttime inversion and daytime superadiabatic layers over the slopes significantly increased longwave radiative cooling and heating rates. Local rates of longwave radiative heating ranged between −30 (i.e., cooling) and 90 K day−1. The effects of the near-surface temperature gradients extended tens of meters into the overlying atmospheres. In small basins, the strong influence of nocturnal near-surface temperature inversions could lead to cooling rates exceeding those over flat plains. To investigate the relative role of longwave radiative cooling on total nighttime cooling in a basin, simulations were conducted for Arizona’s Meteor Crater using observed atmospheric profiles and realistic topography. Longwave radiative cooling accounted for nearly 30% of the total nighttime cooling observed in the Meteor Crater during a calm October night.


2011 ◽  
Vol 68 (6) ◽  
pp. 1323-1339 ◽  
Author(s):  
Christopher Lee ◽  
Mark Ian Richardson

Abstract The authors describe a new radiative transfer model of the Venus atmosphere (RTM) that includes optical properties from nine gases and four cloud modes between 0.1 and 260 μm. A multiple-stream discrete ordinate flux solver is used to calculate solar and atmospheric infrared fluxes with a prescribed temperature profiles and calculate radiative–convective equilibrium temperatures using the model. Components of the RTM are validated using observations from Pioneer Venus and Venus Express. A visible bond albedo of 0.74 and subsolar surface visible flux of 50 W m−2 [4.0% of the top-of-atmosphere (TOA) insolation] are calculated for a suitable temperature and composition profile derived from the Venus International Reference Atmosphere. Solar fluxes are simulated over a range of latitudes and good agreement is found with results from the Pioneer Venus probes and Venera landers. TOA infrared fluxes are compared with Venus Express observations and found to compare well at all observed wavelengths. The RTM is used to calculate radiative heating rates and these calculated heating rates are compared with those prescribed in a modern Venus GCM. Modifications are suggested to improve the prescribed thermal forcing used in recent GCMs. Using a small family of numerical and physical configurations, little sensitivity to vertical resolution is found in the model. For suitable global mean solar forcing a surface temperature of 750 K at radiative–convective equilibrium is calculated, in good agreement with observations and other recent modeling efforts.


2018 ◽  
Vol 57 (4) ◽  
pp. 953-968 ◽  
Author(s):  
D. D. Turner ◽  
M. D. Shupe ◽  
A. B. Zwink

AbstractA 2-yr cloud microphysical property dataset derived from ground-based remote sensors at the Atmospheric Radiation Measurement site near Barrow, Alaska, was used as input into a radiative transfer model to compute radiative heating rate (RHR) profiles in the atmosphere. Both the longwave (LW; 5–100 μm) and shortwave (SW; 0.2–5 μm) RHR profiles show significant month-to-month variability because of seasonal dependence in the vertical profiles of cloud liquid and ice water contents, with additional contributions from the seasonal dependencies of solar zenith angle, water vapor amount, and temperature. The LW and SW RHR profiles were binned to provide characteristic profiles as a function of cloud type and liquid water path (LWP). Single-layer liquid-only clouds are shown to have larger (10–30 K day−1) LW radiative cooling rates at the top of the cloud layer than single-layer mixed-phase clouds; this is due primarily to differences in the vertical distribution of liquid water between the two classes. However, differences in SW RHR profiles at the top of these two classes of clouds are less than 3 K day−1. The absolute value of the RHR in single-layer ice-only clouds is an order of magnitude smaller than in liquid-bearing clouds. Furthermore, for double-layer cloud systems, the phase and condensed water path of the upper cloud strongly modulate the radiative cooling both at the top and within the lower-level cloud. While sensitivity to cloud overlap and phase has been shown previously, the characteristic RHR profiles are markedly different between the different cloud classifications.


2007 ◽  
Vol 7 (20) ◽  
pp. 5391-5400 ◽  
Author(s):  
K. M. Nissen ◽  
K. Matthes ◽  
U. Langematz ◽  
B. Mayer

Abstract. We introduce the improved Freie Universität Berlin (FUB) high-resolution radiation scheme FUBRad and compare it to the 4-band standard ECHAM5 SW radiation scheme of Fouquart and Bonnel (FB). Both schemes are validated against the detailed radiative transfer model libRadtran. FUBRad produces realistic heating rate variations during the solar cycle. The SW heating rate response with the FB scheme is about 20 times smaller than with FUBRad and cannot produce the observed temperature signal. A reduction of the spectral resolution to 6 bands for solar irradiance and ozone absorption cross sections leads to a degradation (reduction) of the solar SW heating rate signal by about 20%. The simulated temperature response agrees qualitatively well with observations in the summer upper stratosphere and mesosphere where irradiance variations dominate the signal. Comparison of the total short-wave heating rates under solar minimum conditions shows good agreement between FUBRad, FB and libRadtran up to the middle mesosphere (60–70 km) indicating that both parameterizations are well suited for climate integrations that do not take solar variability into account. The FUBRad scheme has been implemented as a sub-submodel of the Modular Earth Submodel System (MESSy).


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1254
Author(s):  
Marios-Bruno Korras-Carraca ◽  
Antonis Gkikas ◽  
Christos Matsoukas ◽  
Nikolaos Hatzianastassiou

We assess the 40-year climatological clear-sky global direct radiative effect (DRE) of five main aerosol types using the MERRA-2 reanalysis and a spectral radiative transfer model (FORTH). The study takes advantage of aerosol-speciated, spectrally and vertically resolved optical properties over the period 1980–2019, to accurately determine the aerosol DREs, emphasizing the attribution of the total DREs to each aerosol type. The results show that aerosols radiatively cool the Earth’s surface and heat its atmosphere by 7.56 and 2.35 Wm−2, respectively, overall cooling the planet by 5.21 Wm−2, partly counterbalancing the anthropogenic greenhouse global warming during 1980–2019. These DRE values differ significantly in terms of magnitude, and even sign, among the aerosol types (sulfate and black carbon aerosols cool and heat the planet by 1.88 and 0.19 Wm−2, respectively), the hemispheres (larger NH than SH values), the surface cover type (larger land than ocean values) or the seasons (larger values in local spring and summer), while considerable inter-decadal changes are evident. These DRE differences are even larger by up to an order of magnitude on a regional scale, highlighting the important role of the aerosol direct radiative effect for local and global climate.


Sign in / Sign up

Export Citation Format

Share Document