Composite distribution of North Atlantic extreme wind waves inferred from satellite altimetry data

Author(s):  
Sonia Ponce de León ◽  
Joao Bettencourt

<p>The north Atlantic Ocean is regularly traversed by extratropical cyclones and winter low pressure systems originated in the Western part of the basin that can potentially generate dangerous extreme sea states. The region where these extreme sea states occur is linked to the tracks of the low-pressure systems in the north Atlantic basin.</p><p>Extreme sea states are usually generated by storms that can traverse whole ocean basins and generate high-energy swells that can propagate for thousands of kilometers. Additionally, rogue waves are a recognized source of extreme waves that needs to be considered when designing for operation at sea.</p><p>This study aims at the spatial distribution of the mean and extreme wave significant wave height inside the extratropical cyclones. We studied the significant wave height distribution of extratropical cyclones using merged satellite altimetry data to produce composite maps of this sea state variable. Although there are large variations among individual cyclones, the compositing method allows obtaining general features. We find that the higher waves are in the south-eastern quadrant of the cyclone, due to the extended fetch mechanism. The highest wave heights are found during the 48h period when the cyclone’s strength is maximum.</p><p> </p>

2006 ◽  
Vol 19 (21) ◽  
pp. 5667-5685 ◽  
Author(s):  
Sergey K. Gulev ◽  
Vika Grigorieva

Abstract This paper analyses secular changes and interannual variability in the wind wave, swell, and significant wave height (SWH) characteristics over the North Atlantic and North Pacific on the basis of wind wave climatology derived from the visual wave observations of voluntary observing ship (VOS) officers. These data are available from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS) collection of surface meteorological observations for 1958–2002, but require much more complicated preprocessing than standard meteorological variables such as sea level pressure, temperature, and wind. Visual VOS data allow for separate analysis of changes in wind sea and swell, as well as in significant wave height, which has been derived from wind sea and swell estimates. In both North Atlantic and North Pacific midlatitudes winter significant wave height shows a secular increase from 10 to 40 cm decade−1 during the last 45 yr. However, in the North Atlantic the patterns of trend changes for wind sea and swell are quite different from each other, showing opposite signs of changes in the northeast Atlantic. Trend patterns of wind sea, swell, and SWH in the North Pacific are more consistent with each other. Qualitatively the same conclusions hold for the analysis of interannual variability whose leading modes demonstrate noticeable differences for wind sea and swell. Statistical analysis shows that variability in wind sea is closely associated with the local wind speed, while swell changes can be driven by the variations in the cyclone counts, implying the importance of forcing frequency for the resulting changes in significant wave height. This mechanism of differences in variability patterns of wind sea and swell is likely more realistic than the northeastward propagation of swells from the regions from which the wind sea signal originates.


2015 ◽  
Vol 69 (1) ◽  
pp. 127-144 ◽  
Author(s):  
Roberto Vettor ◽  
C. Guedes Soares

The wave climate along the main transoceanic routes of the North Atlantic sub basin is determined using three different databases: two derived by numerical models in the HIPOCAS and ERA40 databases and one from Voluntary Observing Ships. For each route the distribution of the mean significant wave height along the path is computed as well as the specific scatter diagram. In addition an assessment of the relative wave heading probability is provided. The results highlight a bias in the visual observations especially in the summer and, more in general, for low sea states. The correction of this bias allows better understanding of rough weather avoidance by ships and to determine a storm avoidance correction.


Author(s):  
Sonia Ponce de León ◽  
João H. Bettencourt ◽  
Joseph Brennan ◽  
Frederic Dias

The IOWAGA data base for the North Atlantic region was used to identify the region where extreme values of significant wave height are more likely to occur. The IOWAGA database [1] was obtained from the WAVEWATCH III model [2] hindcast using the CFSR (Climate Forecast System Reanalysis) from NOAA [3,4]. The period of the study covers 1990 up to 2012 (23 years). The variability of the significant wave height was assessed by computing return periods for sea storms where the significant wave height exceeds a given threshold. The return periods of sea storms where the Hs exceeds extreme values for the north Atlantic region were computed allowing for the identification of the extreme wave regions which show that extreme waves are more likely to occur in the storm track regions of the tropical and extratropical north Atlantic cyclones.


2006 ◽  
Vol 36 (12) ◽  
pp. 2328-2339 ◽  
Author(s):  
Iréne Lake ◽  
Peter Lundberg

Abstract As a joint Nordic project, an upward-looking ADCP has been maintained at the sill of the Faroe Bank Channel from 1995 onward. Records from a period in 1998 with three current meters deployed across the channel were used to demonstrate that the Faroe Bank Channel deep-water transport from the Norwegian Sea into the North Atlantic Ocean proper can be reasonably well estimated from one centrally located ADCP. The long-term average of this transport over the period 1995–2001 was found to be 2.1 Sv (Sv ≡ 106 m−3 s−1). The transport record demonstrates a pronounced seasonality. Satellite altimetry shows that this is caused by the northbound Atlantic surface water inflow giving rise to a barotropic modulation of the deep-water flow through the Faroe–Shetland Channel and the southern reaches of the Norwegian Sea.


2014 ◽  
Vol 147 ◽  
pp. 89-98 ◽  
Author(s):  
Elizaveta Zabolotskikh ◽  
Leonid Mitnik ◽  
Bertrand Chapron

Sign in / Sign up

Export Citation Format

Share Document