Assessment of the wave attenuation capacity of a mangrove forest based on its age and the incident wave conditions

Author(s):  
Maria Maza ◽  
Javier L. Lara ◽  
Iñigo J. Losada

<p>Although mangroves reduce annual flooding to millions of people there is not a methodology to implement these solutions and it is still difficult to estimate the protection provided by them under different environmental conditions and ecosystem properties. To move forward in the consecution of an engineering approach when implementing these solutions for coastal defense, the first step to make is to better understand and parameterize the basic physical processes involved in flow-mangroves interaction. With the aim of getting a new formulation for wave decay provided by Rhizophora mangrove forests based on flow and ecosystem properties, an experimental campaign was carried out where both wave attenuation and forces on mangrove individuals were measured under different wave conditions. Both, the hydrodynamic conditions and the mangrove forest, were scaled according to field conditions for short waves. The detailed wave attenuation and drag force measurements obtained in these experiments allowed to obtain new formulations of wave decay produced by the forest depending on the flow, i.e.: water depth, wave height and period, and on the forest characteristics, i.e.: individuals submerged solid volume fraction and density. These formulations are used to get attenuation rates under different flow and ecosystem conditions. The resultant curves provide with the wave decay produced by a specific Rhizophora forest subjected to the defined wave conditions. The forest is defined on the basis of its age, considering the differences in individual trees depending on their maturity and the density of the forest as the number of trees per unit area. Wave conditions are defined by the root mean square wave height and the peak period and water depth is also considered. The obtained curves allow to estimate the width of the forest necessary to reach a certain level of protection considering the local flow conditions and the forest age. This can assist in the inclusion of nature-based solutions in the portfolio of coastal protection measures.</p>

Author(s):  
Li YIPING ◽  
Desmond Ofosu ANIM ◽  
Ying WANG ◽  
Chunyang TANG ◽  
Wei DU ◽  
...  

This paper presents a well-controlled laboratory experimental study to evaluate wave attenuation by artificial emergent plants (Phragmites australis) under different wave conditions and plant stem densities. Results showed substantial wave damping under investigated regular and irregular wave conditions and also the different rates of wave height and within canopy wave-induced flows as they travelled through the vegetated field under all tested conditions. The wave height decreased by 6%–25% at the insertion of the vegetation field and towards the downstream at a mean of 0.2 cm and 0.32 cm for regular and irregular waves respectively. The significant wave height along the vegetation field ranged from 0.89–1.76 cm and 0.8–1.28 cm with time mean height of 1.38 cm and 1.11 cm respectively for regular and irregular waves. This patterns as affected by plant density and also location from the leading edge of vegetation is investigated in the study. The wave energy attenuated by plant induced friction was predicted in terms of energy dissipation factor (fe) by Nielsen’s (1992) empirical model. Shear stress as a driving force of particle resuspension and the implication of the wave attenuation on near shore protection from erosion and sedimentation was discussed. The results and findings in this study will advance our understanding of wave attenuation by an emergent vegetation of Phragmites australis, in water system engineering like near shore and bank protection and restoration projects and also be employed for management purposes to reduce resuspension and erosion in shallow lakes.


2020 ◽  
Vol 50 (6) ◽  
pp. 1583-1604 ◽  
Author(s):  
Qingxiang Liu ◽  
W. Erick Rogers ◽  
Alexander Babanin ◽  
Jingkai Li ◽  
Changlong Guan

AbstractThree dissipative (two viscoelastic and one viscous) ice models are implemented in the spectral wave model WAVEWATCH III to estimate the ice-induced wave attenuation rate. These models are then explored and intercompared through hindcasts of two field cases: one in the autumn Beaufort Sea in 2015 and the other in the Antarctic marginal ice zone (MIZ) in 2012. The capability of these dissipative models, along with their limitations and applicability to operational forecasts, are analyzed and discussed. The sensitivity of the simulated wave height to different source terms—the ice-induced wave decay Sice and other physical processes Sother (e.g., wind input, nonlinear four-wave interactions)—is also investigated. For the Antarctic MIZ experiment, Sother is found to be remarkably less than Sice and thus contributes little to the simulated significant wave height Hs. The saturation of dHs/dx at large wave heights in this case, as reported by a previous study, is well reproduced by the three dissipative ice models with or without the utilization of Sother in the ice-infested seas. A clear downward trend in the peak frequency fp is found as Hs increases. As fp decreases, the dominant wave components of a wave spectrum will experience reduced damping by sea ice, and finally result in the flattening of dHs/dx for Hs > 3 m in this specific case. Nonetheless, Sother should not be disregarded within a more general modeling perspective, as our simulations suggest Sother could be comparable to Sice in the Beaufort Sea case where wave and ice conditions are remarkably different.


1986 ◽  
Vol 1 (20) ◽  
pp. 73 ◽  
Author(s):  
Steven K. Baum ◽  
David R. Basco

A numerical model is developed which calculates the longshore current profile for an arbitrary bottom profile. The basis of the model is the use of radiation stress theory in a longshore momentum balance equation which includes a driving stress, a bottom stress, and a lateral mixing stress. Each of the stresses is derived from previously developed formulations, rederiving them to take into account separate cross shore variations in the wave height and the water depth, as well as the wave approach angle. This is done to dispense with the constant wave breaking index assumption used to model wave decay in the surf zone, which is rejected as unrealistic for natural beaches. A numerical model is used to calculate distributions of the wave height and water depth across the surf zone for arbitrary, yet realistic, bottom profiles. A numerical model of the theoretically derived longshore momentum balance equation is developed and solved using the distributions obtained from the wave decay model. The profiles calculated are compared to previous theoretical models and to laboratory and field measurements.


Author(s):  
Elizabeth Christie ◽  
Iris Möller ◽  
Tom Spencer ◽  
Marissa Yates

Vegetated shorelines have been increasingly recognized for their contribution to natural coastal protection due to their ability to dissipate wave energy. Within the UK, salt marshes are beginning to be included in flood defence schemes. Predicting wave dissipation over vegetation requires accurate representation of salt marsh canopies and the feedback relationship between vegetation and wave conditions. We present a modification to the SWAN vegetation model, which includes a variable drag coefficient and a spatially varying vegetation height. Its application is demonstrated by modelling wave propagation over UK salt marshes. The third generation wave model, SWAN includes a vegetation module for calculation of wave attenuation over vegetation. Wave dissipation is determined based on the vegetation properties and a drag coefficient. This drag coefficient, C_D, is used to calibrate the model, and a fixed value is used per model run. Empirically the drag coefficient has been found to vary with ambient wave conditions. Typically the drag coefficients are defined empirically as a function of either the stem Reynolds number, Rev, or the Keulegan-Carpenter number, KC. The parameter values have been shown to vary with vegetation type. In this paper, we modify the SWAN vegetation module to include a temporally varying CD. This allows the drag coefficient to vary with ambient wave parameters, which gives an improved prediction under time varying wave conditions (e.g. passage of a storm) and includes the change in wave conditions as they travel through the vegetation. We also incorporate spatially varying vegetation height into the model to further improve the representation of the complexity of vegetated shorelines. Using the new formulation we find improved prediction of wave dissipation over both idealized laboratory and field salt marsh vegetation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenhong Pang ◽  
Xiaoyan Zhou ◽  
Zhijun Dai ◽  
Shushi Li ◽  
Hu Huang ◽  
...  

Beach intra-tidal bed level changes are of significance to coastal protection amid global climate changes. However, due to the limitation of instruments and the disturbance induced by wave motions superimposed on water levels, it was difficult to detect the high-frequency oscillation of the submerged beach bed level. In this study, an observation, lasting for 12 days and covering the middle tide to the following spring tide, was conducted on a meso-macro tidal beach, Yintan Beach, to simultaneously detect the characteristics and influence mechanism of bed level changes at intra-tidal and tidal cycle scales. The collected data included water depth, suspended sediment concentration (SSC), waves, high-frequency three-dimensional (3-D) velocity, and the distance of the seabed to the acoustic Doppler velocimeter (ADV) probe, which were measured by an optical backscatter sensor, two Tide & Wave Recorder-2050s, and an ADV, respectively. The results showed that the tidal cycle-averaged bed level decreased by 58.8 mm, increased by 12.6 mm, and increased by 28.9 mm during neap, middle, and spring tides in succession, respectively, compared with the preceding tidal regimes. The net erosion mainly resulted from large incident wave heights and the consequent strong offshore-directed sediment transport induced by undertows. Moreover, the variations in the bed level were more prominent during a neap to middle tides than during middle to spring tides, which were jointly caused by the wave-breaking probability regulated by water depth and the relative residence times of shoaling wave, breaker, and surf zones that were determined by relative tidal range. In terms of the intra-tidal bed level, it displayed an intra-tidal tendency of increase during floods and decrease during ebb tides, i.e., the intra-tidal bed level changes were controlled by water depth, which modulated the effects of waves on sediment resuspension and vertical sediment exchange. To be specific, waves and SSC were responsible for the intra-tidal bed level changes under low-energy wave conditions, while mean current and bedform exerted important influences on the variations of the intra-tidal bed level under moderate wave conditions, which broke the foregoing interrelation between bed level, waves, and SSC. This study, therefore, emphasizes the usage of ADV measurement to investigate bed level changes in sandy coasts.


2022 ◽  
Vol 8 ◽  
Author(s):  
Kiernan Kelty ◽  
Tori Tomiczek ◽  
Daniel Thomas Cox ◽  
Pedro Lomonaco ◽  
William Mitchell

This study investigates the potential of a Rhizophora mangrove forest of moderate cross-shore thickness to attenuate wave heights using an idealized prototype-scale physical model constructed in a 104 m long wave flume. An 18 m long cross-shore transect of an idealized red mangrove forest based on the trunk-prop root system was constructed in the flume. Two cases with forest densities of 0.75 and 0.375 stems/m2 and a third baseline case with no mangroves were considered. LiDAR was used to quantify the projected area per unit height and to estimate the effective diameter of the system. The methodology was accurate to within 2% of the known stem diameters and 10% of the known prop root diameters. Random and regular wave conditions seaward, throughout, and inland of the forest were measured to determine wave height decay rates and drag coefficients for relative water depths ranging 0.36 to 1.44. Wave height decay rates ranged 0.008–0.021 m–1 for the high-density cases and 0.004–0.010 m–1 for the low-density cases and were found to be a function of water depth. Doubling the forest density increased the decay rate by a factor two, consistent with previous studies for other types of emergent vegetation. Drag coefficients ranged 0.4–3.8, and were found to be dependent on the Reynolds number. Uncertainty in the estimates of the drag coefficient due to the measured projected area and measured wave attenuation was quantified and found to have average combined standard deviations of 0.58 and 0.56 for random and regular waves, respectively. Two previous reduced-scale studies of wave attenuation by mangroves compared well with the present study when their Reynolds numbers were re-scaled by λ3/2 where λ is the prototype-to-model geometric scale ratio. Using the combined data sets, an equation is proposed to estimate the drag coefficient for a Rhizophora mangrove forest: CD = 0.6 + 3e04/ReDBH with an uncertainty of 0.69 over the range 5e03 < ReDBH < 1.9e05, where ReDBH is based on the tree diameter at breast height. These results may improve engineering guidance for the use of mangroves and other emergent vegetation in coastal wave attenuation.


2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


2021 ◽  
Vol 9 (4) ◽  
pp. 388
Author(s):  
Huu Phu Nguyen ◽  
Jeong Cheol Park ◽  
Mengmeng Han ◽  
Chien Ming Wang ◽  
Nagi Abdussamie ◽  
...  

Wave attenuation performance is the prime consideration when designing any floating breakwater. For a 2D hydrodynamic analysis of a floating breakwater, the wave attenuation performance is evaluated by the transmission coefficient, which is defined as the ratio between the transmitted wave height and the incident wave height. For a 3D breakwater, some researchers still adopted this evaluation approach with the transmitted wave height taken at a surface point, while others used the mean transmission coefficient within a surface area. This paper aims to first examine the rationality of these two evaluation approaches via verified numerical simulations of 3D heave-only floating breakwaters in regular and irregular waves. A new index—a representative transmission coefficient—is then presented for one to easily compare the wave attenuation performances of different 3D floating breakwater designs.


1992 ◽  
Vol 17 (1-2) ◽  
pp. 49-70 ◽  
Author(s):  
R.C. Nelson ◽  
J. Gonsalves
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document