Experimental Evaluation of Equivalent Permeability for Permeable Interlocking Concrete Paver (Soil-Block) Composite System

Author(s):  
Jaehun Ahn ◽  
Yunje Lee

<p>Increase in impermeable area and frequency of intense rainfall cause flooding damages in urban areas. Permeable Interlocking Concrete Paver (PICP) system, which is a composite system comprised of soils and blocks, is considered as one of the solutions to improve the urban water environment, and its applications are increasing rapidly worldwide. It is important to evaluate the initial permeability and its reduction due to clogging. In this study, the permeability and effect of clogging were evaluated based on experimental methods developed. The equivalent permeability and its degradation of PICP systems were successfully evaluated using the prodecure developed, and the equation for equivalent permeability presented quite a good agreement with the experimental results.</p><p>ACKNOWLEDGEMENT : The authors would like to thank the Ministry of Land, Infrastructure, and Transport of Korean government for the grant from Technology Advancement Research Program (grant no. 20CTAP-C152124-02) and Basic Science Research Program (grant no. 2017R1D1A3B03034563) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.</p>

2020 ◽  
Author(s):  
Jaewon Yoo ◽  
Jaehun Ahn

<p>It is an important task to model and predict seismic ground response; the results of ground response analysis are, in turn, used to assess liquefaction and integrity of undergound and upper structures. There has been numerious research and development on modelling of seismic ground response, but often there are quite large difference between prediction and measurement. In this study, it is attempted to train the input and output ground excitation data and make prediction based on it. To initiate this work, the deep learning network was trained for low level excitation data; the results showed reasonable match with actual measurements.</p><p>ACKNOWLEDGEMENT : The authors would like to thank the Ministry of Land, Infrastructure, and Transport of Korean government for the grant from Technology Advancement Research Program (grant no. 20CTAP-C152100-02) and Basic Science Research Program (grant no. 2017R1D1A3B03034563) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.</p>


2002 ◽  
Vol 2002 (5) ◽  
pp. 330-343
Author(s):  
Lawrence H. Hentz ◽  
Brian M. Balchunas ◽  
Gregory M. Adams ◽  
Ron Hargreaves ◽  
Jay Witherspoon ◽  
...  

1999 ◽  
Vol 39 (5) ◽  
pp. 145-151 ◽  
Author(s):  
C. J. Pratt

Permeable surfaces for roads and footpaths have been used as a means of disposal of stormwater in developed urban areas. Such surfaces provide an alternative to impermeable concrete or tarmacadam surfaces which would otherwise produce rapid stormwater runoff, leading to possible flooding and degeneration of receiving water quality through the uncontrolled discharge of polluted urban waters. A further advantage may be obtained from such constructions by undersealing them so as to retain stormwater for re-use for non-potable uses. The potential for general introduction of this type of storage and re-use system in residential areas is discussed and possible alternative designs for the drainage infrastructure proposed. To have widespread impact such a strategy must deliver cost savings as well as reduce the impact on the water environment of anticipated water usage demands. The source of such cost savings and the general environmental benefits of such systems will be presented. The materials used in such a sealed construction and the beneficial changes to the stored water quality are outlined. Recent work has also shown that where the pavement is used for car parking any oils dropped on the surface and washed into the structure by the stormwater may also be degraded. Details will be given of a site in the UK where the above construction is to be used to provide stormwater storage for re-use in flushing toilets at a Youth Hostel.


2014 ◽  
Vol 70 (11) ◽  
pp. 1774-1781 ◽  
Author(s):  
Yifan Ding ◽  
Deshan Tang ◽  
Yuhang Wei ◽  
Sun Yin

Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water–society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social–economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.


Sign in / Sign up

Export Citation Format

Share Document