Shaping Planetary Surfaces: The Impact of Liquid and Frozen Water on Hillslope Topography

Author(s):  
Taylor Smith ◽  
Bodo Bookhagen

<p>The availability of liquid water plays a primary role in controlling the development of topography. Hillslope asymmetry (HA), or slope differences between terrain aspects, has been well-documented in small-scale and field-based studies throughout the world. In this study, we apply a consistent HA analysis method across the entire globe and find that poleward facing hillslopes are on average steeper than equator-facing hillslopes, with the exception of high-latitude, high-elevation, and low-temperature regions where equator-facing slopes tend to be steeper.</p><p>To test the impact of different land cover and climate regimes on HA, we use global and high-resolution elevation, vegetation and land-surface temperature data to examine erosional process differences between poleward- and equator-facing hillslopes. We find that vegetation supports poleward-steepening, and that low temperatures and high freeze-thaw cycle frequencies enhance equator-steepening of hillslopes. We further show that HA is propagated into the size and form of fluvial drainage networks. We posit that insolation plays a key role in controlling soil-water availability and retention, and thus drives asymmetries in vegetation cover, soil formation rates and landscape form at the planetary scale.</p>

2021 ◽  
Author(s):  
Taylor Smith ◽  
Bodo Bookhagen

<p>Insolation differences play a primary role in controlling microclimate and vegetation cover, which together influence the development of topography. Topographic asymmetry (TA), or slope differences between terrain aspects, has been well documented in small-scale, field-based, and modeling studies. Here we combine a suite of environmental (e.g., vegetation, temperature, solar insolation) and topographic (e.g., elevation, drainage network) data to explore the driving mechanisms and markers of TA on a global scale. Using a novel empirical TA analysis method, we find that (1) steeper terrain has higher TA magnitudes, (2) globally, pole-facing terrain is on average steeper than equator-facing terrain, especially in mid-latitude, tectonically quiescent, and vegetated landscapes, and (3) high-elevation and low-temperature regions tend to have terrain steepened towards the equator. We further show that there are distinct differences in climate and vegetation cover across terrain aspects, and that TA is reflected in the size and form of fluvial drainage networks. Our work supports the argument that insolation asymmetries engender differences in local microclimates and vegetation on opposing terrain aspects, which broadly encourage the development of asymmetric topography across a range of lithologic, tectonic, geomorphic, and climatic settings.</p>


2014 ◽  
Vol 1000 ◽  
pp. 285-288 ◽  
Author(s):  
Michal Matysík ◽  
Iveta Plšková ◽  
Zdeněk Chobola

The aim of this paper is to evaluate the possibility of using the Impact-echo method for assessment of extremely long period of frost resistance of ceramic tiles. Sets of ceramic tiles of the Ia class to EN 14 411 B standard made by manufacture RACOs have been analyzed. The ceramic tiles under investigation have been subjected to 500 freeze-thaw-cycle based degradation in compliance with the relevant EN ISO 10545-12 standard. To verify the correctness of the Impact-echo method results, additional physical properties of the ceramic tiles under test have been measured. To analyze the specimen surface condition, we also used Olympus LEXT 3100 confocal scanning microscope. It has been proved that the acoustic method Impact-echo is a sensitive indicator of the structure condition and can be applied to the ceramic cladding element frost resistance and service life prediction assessment.


Author(s):  
P. Kalantari ◽  
M. Bernier ◽  
K. C. McDonal ◽  
J. Poulin

Seasonal terrestrial Freeze/Thaw cycle in Northern Quebec Tundra (Nunavik) was determined and evaluated with passive microwave observations. SMOS time series data were analyzed to examine seasonal variations of soil freezing, and to assess the impact of land cover on the Freeze/Thaw cycle. Furthermore, the soil freezing maps derived from SMOS observations were compared to field survey data in the region near Umiujaq. The objective is to develop algorithms to follow the seasonal cycle of freezing and thawing of the soil adapted to Canadian subarctic, a territory with a high complexity of land cover (vegetation, soil, and water bodies). Field data shows that soil freezing and thawing dates vary much spatially at the local scale in the Boreal Forest and the Tundra. The results showed a satisfactory pixel by pixel mapping for the daily soil state monitoring with a > 80% success rate with in situ data for the HH and VV polarizations, and for different land cover. The average accuracies are 80% and 84% for the soil freeze period, and soil thaw period respectively. The comparison is limited because of the small number of validation pixels.


2016 ◽  
Vol 11 (3) ◽  
pp. 36-40
Author(s):  
Сабиров ◽  
Ayrat Sabirov

The impact of productive activity of human on the ecological balance of nature. Ecological functions of soils of forest biogeocenoses. Regional features of the ecosystems functioning, soil formation factors. Organization of the soil cover state monitoring. Environmental monitoring of forest soils. Objectives of soil monitoring of forest ecosystems. Collection of the available information on forest ecosystems. Choice of monitoring objects. Soil and environmental hospitals. Fixed trial areas. Long-term and seasonal observations of soil properties. Temporary trial areas. Soil monitoring on the route courses. The use of satellite imagery in the environmental assessment of erosive landscapes. Controlled soil indicators. Research methods of soil properties and composition of pollutants. Processing of experimental data using information technology. Mathematical models of the spread of pollutants, the interrelation between soil indicators (in the soil), between soil properties and indicators of the characteristic of forest, the evolution of forest soil. Small-scale and medium-scale regional maps of land erosion, soil contamination by chemicals. Large-scale maps of physical degradation of soils, the content of macronutrients and micronutrients, acidity, humus condition of soils. Maps are accompanied by an explanatory note (soil sketch). Maximum permissible amount of the chemicals (maximum allowable concentrations) polluting the soil. Maximum permissible loading on forest soils under anthropogenic impact. Rational use and protection of forest ecosystems.


2021 ◽  
Author(s):  
Elchin Jafarov ◽  
Daniil Svyatsky ◽  
Dylan Harp ◽  
Brent Newman ◽  
David Moulton ◽  
...  

Abstract. A significant portion of the Arctic coastal plain is classified as polygonal tundra and plays a vital role in soil carbon cycling. Recent research suggests that lateral transport of dissolved carbon could exceed vertical carbon releases to the atmosphere. However, the details of lateral subsurface flow in polygonal tundra have not been well studied. We incorporated a subsurface transport process into an existing state-of-art hydrothermal model. The model captures the physical effects of freeze/thaw cycles on lateral flow in polygonal tundra. The new modeling capability enables non-reactive tracer movement within subsurface. We utilized this new capability to investigate the impact of freeze/thaw cycle on lateral flow in the polygon polygonal tundra. Our study indicates the important role of freeze/thaw cycle and freeze-up effect on lateral tracer transport, suggesting that dissolved species could be transported from the middle of the polygon to the sides within a couple of thaw seasons. Introducing carbon lateral transport in the climate models could substantially reduce the uncertainty associated with the impact of thawing permafrost.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3145
Author(s):  
Tingting Kang ◽  
Zeng Li ◽  
Yanchun Gao

Reference evapotranspiration (ETo) is an effective measure of atmospheric water demand of the land surface. In-depth investigations of the relationship between ETo and primary climatic factors can facilitate the adaptable agriculture and optimize water management, especially in the ecologically fragile Taihang Mountains (THM). This work assessed the spatiotemporal dynamics of ETo and its driving climatic factors from 1973 to 2016 in THM. Results showed: (1) Annual ETo slightly increased during 1973–2016; relative humidity (RH) decreased more slowly, the temperature increased more rapidly, and wind speed (WS) decreased more rapidly at higher elevation than those at lower elevations; (2) two breakpoints occurred in ETo series at 1990 and 1997, and an “evaporation paradox” existed in 1973–1990; (3) ETo at higher elevations had greater sensitivity to changes in RH and lower sensitivity to changes in Tmax and WS. Sensitivity of ETo to minimum air temperature (Tmin) at middle elevations was lowest among three elevation bands; (4) RH and sunshine duration (SD) were the dominant climatic factors of ETo for most periods and stations. This study helps us understand the impact of climate change on ETo in mountainous areas and confirms reference evapotranspiration in high-elevation areas is particularly sensitive to climate change.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1198
Author(s):  
Hao Li ◽  
Yuan Zhang ◽  
Haolong Guo

In order to improve the accuracy of the analysis of the impact of freeze–thaw cycle on concrete durability in a salt freezing environment, the numerical simulation of the impact of the freeze–thaw cycle on concrete durability in a salt freezing erosion environment is studied in this paper. Firstly, considering the influence of axial force and bending moment on the relationship between bending moment and curvature, a concrete fiber beam column model is established. Then, according to the joint influence of temperature field, stress field and seepage field on concrete in the process of freezing and thawing, the control differential equation of the freezing and thawing cycle is established. The freeze–thaw damage section is divided, the non-uniform distribution of freeze–thaw damage is determined, and the division of the freeze–thaw damage section is completed. According to the linear relationship between freeze–thaw damage degree, relative dynamic elastic modulus, freeze–thaw cycle times and position variables, the durability of concrete is numerically simulated, and the attenuation law of bond strength at different section depths after freeze–thaw is determined. The results show that the temperature curve simulated by the design method is consistent with the actually measured temperature curve, which can better reduce the temperature change of the inner core of the test block during freezing and thawing, and the relative dynamic elastic modulus is in good agreement with the actual value, which can prove that the method in this paper has certain practical application value. It is expected to provide some reference for solving the durability problem of concrete in a salt frost erosion environment and the optimal design of concrete structures.


2020 ◽  
Vol 14 ◽  
pp. 117822342097236
Author(s):  
Kristi K Snyder ◽  
Robert G Van Buskirk ◽  
John G Baust ◽  
John M Baust

Introduction: Breast cancer is the most prominent form of cancer and the second leading cause of death in women behind lung cancer. The primary modes of treatment today include surgical excision (lumpectomy, mastectomy), radiation, chemoablation, anti-HER2/neu therapy, and/or hormone therapy. The severe side effects associated with these therapies suggest a minimally invasive therapy with fewer quality of life issues would be advantageous for treatment of this pervasive disease. Cryoablation has been used in the treatment of other cancers, including prostate, skin, and cervical, for decades and has been shown to be a successful minimally invasive therapeutic option. To this end, the use of cryotherapy for the treatment of breast cancer has increased over the last several years. Although successful, one of the challenges in cryoablation is management of cancer destruction in the periphery of the ice ball as the tissue within this outer margin may not experience ablative temperatures. In breast cancer, this is of concern due to the lobular nature of the tumors. As such, in this study, we investigated the level of cell death at various temperatures associated with the margin of a cryogenic lesion as well as the impact of repetitive freezing and thawing methods on overall efficacy. Methods: Human breast cancer cells, MCF-7, were exposed to temperatures of −5°C, −10°C, −15°C, −20°C, or −25°C for 5-minute freeze intervals in a single or repeat freeze-thaw cycle. Samples were thawed with either passive or active warming for 5 or 10 minutes. Samples were assessed at 1, 2, and 3 days post-freeze to assess cell survival and recovery. In addition, the modes of cell death associated with freezing were assessed over the initial 24-hour post-thaw recovery period. Results: Exposure of MCF-7 cells to −5°C and −10°C resulted in minimal cell death regardless of the freeze/thaw conditions. Freezing to a temperature of −25°C resulted in complete cell death 1 day post-thaw with no cell recovery in all freeze/thaw scenarios evaluated. Exposure to a single freeze event resulted in a gradual increase in cell death at −15°C and −20°C. Application of a repeat freeze-thaw cycle (dual 5-minute freeze) resulted in an increase in cell death with complete destruction at −20°C and near complete death at −15°C (day 1 survival: single −15°C freeze/thaw = 20%; repeated −15°C freeze/thaw = 4%). Analysis of thaw interval time (5 vs 10 minute) demonstrated that the shorter 5-minute thaw interval between freezes resulted in increased cell destruction. Furthermore, investigation of thaw rate (active vs passive thawing) demonstrated that active thawing resulted in increased cell survival thereby less effective ablation compared with passive thawing (eg, −15°C 5/10/5 procedure survival, passive thaw: 4% vs active thaw: 29%). Conclusions: In summary, these in vitro findings suggest that freezing to temperatures of 25°C results in a high degree of breast cancer cell destruction. Furthermore, the data demonstrate that the application of a repeat freeze procedure with a passive 5-minute or 10-minute thaw interval between freeze cycles increases the minimal lethal temperature to the −15°C to −20°C range. The data also demonstrate that the use of an active thawing procedure between freezes reduces ablation efficacy at temperatures associated with the iceball periphery. These findings may be important to improving future clinical applications of cryoablation for the treatment of breast cancer.


2021 ◽  
Vol 13 (12) ◽  
pp. 2336
Author(s):  
Chaonan Chen ◽  
Li Tian ◽  
Lianqi Zhu ◽  
Yuanke Zhou

Albedo is a characterization of the Earth’s surface ability to reflect solar radiation, and control the amount of solar radiation absorbed by the land surface. Within the context of global warming, the temporal and spatial changes of the albedo and its response to climate factors remain unclear. Based on MCD43A3 (V005) albedo and meteorological data (i.e., temperature and precipitation), we analyzed the spatiotemporal variations of albedo (2000–2016) and its responses to climate change during the growing season on the Qinghai-Tibet Plateau (QTP). The results indicated an overall downward trend in the annual albedo during the growing season, the decrease rate was 0.25%/decade, and the monthly albedo showed a similar trend, especially in May, when the decrease rate was 0.53%/decade. The changes also showed regional variations, such as for the annual albedo, the areas with significant decrease and increase in albedo were 181.52 × 103 km2 (13.10%) and 48.82 × 103 km2 (3.52%), respectively, and the intensity of albedo changes in low-elevation areas was more pronounced than in high-elevation areas. In addition, the annual albedo-temperature/precipitation relationships clearly differed at different elevations. The albedo below 2000 m and at 5000–6000 m was mainly negatively correlated with temperature, while at 2000–4000 m it was mainly negatively correlated with precipitation. The contemporaneous temperature could negatively impact the monthly albedo in significant ways at the beginning of the growing season (May and June), whereas in the middle of the growing season (July and August), the albedo was mainly negatively correlated with precipitation, and at the end of the growing season (September), the albedo showed a weak correlation with temperature/precipitation.


Sign in / Sign up

Export Citation Format

Share Document