A multidisciplinary approach to understanding the population structure of an exploited Southern Ocean top predator, the Antarctic toothfish, to improve sustainability and marine spatial planning

Author(s):  
Jilda Caccavo ◽  
Camila Mazzoni ◽  
Thomas Brey

<p>The Antarctic toothfish (<em>Dissostichus mawsoni</em>), commonly known as Chilean Sea Bass, has a critical role in Southern ecosystems as a top fish predator. Simultaneously, it represents the most lucrative Antarctic fishery.</p><p>Its fishery is managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), which introduced the world’s largest Marine Protected Area (MPA) in the Ross Sea region of the Southern Ocean in 2016.</p><p>Since 2013, scientists at the Alfred Wegener Institute in Germany have been proposing the creation of an even more expansive MPA in the Weddell Sea region of the Southern Ocean, in order to protect unique ecosystems in this region, which has largely escaped the exploitation seen in the Ross Sea, due to its historic inaccessibility. However, CCAMLR, whose 25-member country composition functions by consensus, has failed to arrive at unanimous support for the various forms of a Weddell Sea MPA (WSMPA) proposed over recent years.</p><p>A remaining impediment to the design and acceptance of a WSMPA, is a near total lack of knowledge of the life history and population structure of Antarctica toothfish in the Weddell Sea. Much of the data regarding connectivity and ontogenic movement of Antarctic toothfish derive from the Ross Sea, given the presence of an active fishery there since 1997. Based on the hypotheses that have arisen from the Ross Sea (which remain contentious), a possible life cycle of Antarctic toothfish comprises juvenile development on nutrient rich continental shelf areas, followed by passive transport via gyre systems to offshore sea mounts, where spawning occurs, prior to completion of the cycle as fish are passively transported back towards the coast.</p><p>The combination of population genetics and otolith chemistry, methodologies which define population structure via metrics of relatedness and provenance respectively, offers the possibility to fill many of the existing knowledge gaps with regards to Antarctic toothfish life history connectivity in the Weddell Sea region of the Southern Ocean. The integration of hydrographic data on water mass movement which informs both the passive transport of Antarctic toothfish at various life stages, as well as the location of important prey sources, is an integral third point of consideration, completing the development of life history connectivity hypotheses testable via the aforementioned metrics.</p><p>Tissue samples from the present study derive from otoliths (fish ear bones), which are a standard tissue extract by CCAMLR observers on Antarctic fishing vessels, historically collected for age determination. Otoliths provide both a source of DNA for genetics work, via tissue traces dried on the otolith exterior, as well as a source for chemistry analysis, via trace element analysis of otolith ring layers from the nucleus (earliest) to edge (latest) elemental depositions.</p><p>The aim of the present study is to utilize this readily available tissue source (otoliths) in order to apply both aforementioned methodologies, with the ultimate aim to test between hypotheses of single or multiple populations within the Weddell Sea, while also contextualizing those Weddell Sea population(s) within the greater Southern Ocean distribution of Antarctic toothfish.</p>

Hydrobiologia ◽  
2015 ◽  
Vol 761 (1) ◽  
pp. 397-414 ◽  
Author(s):  
Stuart Hanchet ◽  
Alistair Dunn ◽  
Steven Parker ◽  
Peter Horn ◽  
Darren Stevens ◽  
...  

MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 633-640
Author(s):  
SANDIP R.OZA ◽  
R.K.K. SINGH ◽  
ABHINAV SRIVASTAVA ◽  
MIHIR K.DASH ◽  
I.M.L. DAS ◽  
...  

The growth and decay of sea ice are complex processes and have important feedback onto the oceanic and atmospheric circulation. In the Antarctic, sea ice variability significantly affects the primary productivity in the Southern Ocean and thereby negatively influences the performance and survival of species in polar ecosystem. In present days, the awareness on the sea ice variability in the Antarctic is not as matured as it is for the Arctic region. The present paper focuses on the inter-annual trends (1999-2009) observed in the monthly fractional sea ice cover in the Antarctic at 1 × 1 degree level, for the November and February months, derived from QuikSCAT scatterometer data. OSCAT scatterometer data from India’s Oceansat-2 satellite were used to asses the sea ice extent (SIE) observed in the month of November 2009 and February 2010 and its deviation from climatic maximum (1979-2002) sea ice extent (CMSIE). Large differences were observed between SIE and CMSIE, however, trend results show that it is due to the high inter-annual variability in sea ice cover. Spatial distribution of trends show the existence of positive and negative trends in the parts of Western Pacific Ocean, Ross Sea, Amundsen and Bellingshausen Seas (ABS), Weddell Sea and Indian ocean sector of southern ocean. Sea ice trends are compared with long-term SST trends (1982-2009) observed in the austral summer month of February. Large-scale cooling trend observed around Ross Sea and warming trend in ABS sector are the distinct outcome of the study.


Hydrobiologia ◽  
2015 ◽  
Vol 761 (1) ◽  
pp. 415-415
Author(s):  
Stuart Hanchet ◽  
Alistair Dunn ◽  
Steven Parker ◽  
Peter Horn ◽  
Darren Stevens ◽  
...  

2021 ◽  
Author(s):  
Mónica Núñez-Flores ◽  
Daniel Gomez-Uchida ◽  
Pablo J. López-González

Thouarella Gray, 1870, is one of the most speciose genera among gorgonians of the family Primnoidae (Cnidaria:Octocorallia:Anthozoa), being remarkably diverse in the Antarctic and sub-Antarctic seafloor. However, their diversity in the Southern Ocean is likely underestimated. Phylogenetic analyses of mitochondrial and nuclear DNA markers were integrated with species delimitation approaches as well as morphological colonial and polyps features and skeletal SEM examinations to describe and illustrate three new species within Thouarella, from the Weddell Sea, Southern Ocean: T. amundseni sp. nov., T. dolichoespinosa sp. nov. and T. pseudoislai sp. nov. Our species delimitation results suggest, for the first time, the potential presence of Antarctic and sub-Antarctic cryptic species of primnoids, based on the likely presence of sibling species within T. undulata and T. crenelata. With the three new species here described, the global diversity of Thouarella has increased to 41 species, 15 of which are endemic to the Antarctic and sub-Antarctic waters. Consequently, our results provide new steps for uncovering the shelf benthonic macrofauna’s hidden diversity in the Southern Ocean. Finally, we recommend using an integrative taxonomic framework in this group of organisms and species delimitation approaches because the distinctions between some Thouarella species based only on a superficial examination of their macro- and micromorphological features is, in many cases, limited.


Zootaxa ◽  
2009 ◽  
Vol 2096 (1) ◽  
pp. 395-412 ◽  
Author(s):  
BRENDA LÍA DOTI ◽  
MADHUMITA CHOUDHURY ◽  
ANGELIKA BRANDT

A new genus of Paramunnidae, Holodentata (type species: Paramunna gaussi Vanhöffen, 1914) is erected. The new genus comprises two new species: H. caeca, from the deep Weddell Sea and H. triangulata, from the Ross Sea. The new genus is distinguished by the following characters: article 3 of the antenna short and with strong denticles, mandible palp absent, article 2 of maxilliped palp longest, coxal plates visible in dorsal view in all pereonites, pleotelson broad and laterally denticulated.


Zootaxa ◽  
2019 ◽  
Vol 4570 (1) ◽  
pp. 1
Author(s):  
JOAN J. SOTO ÀNGEL ◽  
ÁLVARO L. PEÑA CANTERO

Hydrozoans are a conspicuous component of Antarctic benthic communitites. Recent taxonomic effort has led to a substantial increase in knowledge on the diversity of benthic hydroids from some areas of the Southern Ocean, including the Weddell Sea, the largest sea in the Antarctic region. However, the study of many hydrozoan taxa are still pending, and the diversity in this huge region is expected to be higher than currently known. In order to contribute to the knowledge of taxonomy, ecology and distribution of these cnidarians, a study of unpublished material collected by several German Antarctic expeditions aboard the RV Polarstern in the eastern sector of the Weddell Sea has been conducted. A total of 77 species belonging to 22 families and 28 genera of benthic hydroids have been inventoried, constituting the most prolific collection hitherto analyzed. Most species (81%) belong to Leptothecata, but the observed share of Anthoathecata (19%) is higher than in previous Antarctic hydrozoan studies. Symplectoscyphidae was the most speciose family with 16 representatives (22%), followed by Haleciidae with 10 (14%) and Staurothecidae with 8 (11%). The number of species known in the area was increased with 27 new records, including several species rarely documented. As a result, the Weddell Sea becomes the second Antarctic region in terms of hydrozoan diversity, with 89 species known to date. Novel data on the use of substrate, reproductive phenology, and bathymetric range are provided for the inventoried species. 


Polar Record ◽  
1990 ◽  
Vol 26 (159) ◽  
pp. 277-288 ◽  
Author(s):  
P. D. Shaughnessy

AbstractAfter landing the Ross Sea shore party of Shackleton's Imperial Trans-Antarctic Expedition at Cape Evans, McMurdo Sound, SY Aurora drifted for 313 days between May 1915 and March 1916 in the pack iceof the Ross Sea and Southern Ocean. During the drift A. H. Ninnis maintained observations of the fauna. He was out hunting on the pack ice on at least 86 days to augment the ship's slender provisions, taking 289 penguins, 10 other sea birds and 20 seals. He sighted whales on at least 15 days, including killer whales in July and August and four large whales, possibly blue whales, in November. He also noted birds returning south for the breeding season in spring, progress of moult in emperor penguins, pupping of crabeater and leopard seals, and food items of several seals and seabirds. Most of his report is presented here, edited to improve its readability and remove abbreviations; the text is preceded by a brief summary of the fauna seen and followed by footnotes on some of his observations.


2007 ◽  
Vol 24 (10) ◽  
pp. 1757-1772 ◽  
Author(s):  
Takeshi Tamura ◽  
Kay I. Ohshima ◽  
Thorsten Markus ◽  
Donald J. Cavalieri ◽  
Sohey Nihashi ◽  
...  

Abstract Antarctic coastal polynyas are important areas of high sea ice production and dense water formation, and thus their detection including an estimate of thin ice thickness is essential. In this paper, the authors propose an algorithm that estimates thin ice thickness and detects fast ice using Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) data in the Antarctic Ocean. Detection and estimation of sea ice thicknesses of <0.2 m are based on the SSM/I 85- and 37-GHz polarization ratios (PR85 and PR37) through a comparison with sea ice thicknesses estimated from the Advanced Very High Resolution Radiometer (AVHRR) data. The exclusion of data affected by atmospheric water vapor is discussed. Because thin ice and fast ice (specifically ice shelves, glacier tongues, icebergs, and landfast ice) have similar PR signatures, a scheme was developed to separate these two surface types before the application of the thin ice algorithm to coastal polynyas. The probability that the algorithm correctly distinguishes thin ice from thick ice and from fast ice is ∼95%, relative to the ice thicknesses estimated from AVHRR. Although the standard deviation of the difference between the thin ice thicknesses estimated from the SSM/I algorithm and AVHRR is ∼0.05 m and thus not small, the estimated ice thicknesses from the microwave algorithm appear to have small biases and the accuracies are independent of region and season. A distribution map of thin ice occurrences derived from the SSM/I algorithm represents the Ross Sea coastal polynya being by far the largest among the Antarctic coastal polynyas; the Weddell Sea coastal polynyas are much smaller. Along the coast of East Antarctica, coastal polynyas frequently form on the western side of peninsulas and glacier tongues, downstream of the Antarctic Coastal Current.


2011 ◽  
Vol 23 (2) ◽  
pp. 144-151 ◽  
Author(s):  
Stefano Schiaparelli ◽  
Maria Chiara Alvaro ◽  
Ruth Barnich

AbstractMany different polychaete-echinoderm relationships have been described, from tropical to polar environments. Most of these associations have been generally defined as ‘commensal’, with polychaetes guests usually found on the oral surface of their hosts or, in a very few cases, even inside the host's body. Here we present an inquilinistic association involving two Antarctic species, the polychaete Gorekia crassicirris (Willey, 1902) (Polynoidae) and the irregular sea urchin Abatus nimrodi (Koheler, 1911) (Schizasteridae) found in the Ross Sea. This record is only the second worldwide for this kind of association, after that of the polychaete Benthoscolex cubanus which lives in the gut of the spatangoid Archeopneustes hystrix in Caribbean waters. Gorekia crassicirris seems to be a polyxenous species as it was also observed on another schizasterid, Brachysternaster chescheri Larrain, 1985 in the Weddell Sea. Considering that A. nimrodi is absent from that area and that the two sea urchin species have a disjoint distribution, it is possible that a ‘host-switch’ phenomenon occurred at some stage. We review the available literature to compare the Antarctic pairing with the other known examples of similar associations.


Sign in / Sign up

Export Citation Format

Share Document